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Summary

Knowledge compilation, a fundamental technique in computer science, involves
the representation of logical formulas using directed acyclic graphs (DAGs) to allow
for e�cient handling of downstream computation queries. Knowledge compilation is
closely related to probabilistic circuits through the addition of literal weights when
handling queries, to account for probability distributions. Knowledge compilation
has numerous applications spanning di�erent areas of research, from sampling test
configurations in combinatorial testing, to counting models of logical formulas, and
tackling optimization problems in operational research. While the applications of
knowledge compilation are typically on problems known to be theoretically hard,
such as model counting for Boolean formula in conjunctive normal form being
#P-hard, this has not stopped the research community from attempting to scale up
approaches involving knowledge compilation in practice. Existing attempts study
knowledge compilation techniques in isolation, and focus on developing more succinct
knowledge compilation forms as well as better compilation heuristics. This thesis
takes an orthogonal view on the scalability of knowledge compilation applications
by looking at all aspects of the task, and provides a comprehensive study of various
ways to more e�ciently use knowledge compilation techniques in practice.

The core focus of this thesis lies in presenting a framework, termed ERA, that
encompasses novel approaches to enhance the scalability of applications involving
knowledge compilation techniques. The approaches range from developing relaxed
encodings for problems, enabling knowledge compilation to work with more succinct
logical formulas, and using the compiled representations in a more e�cient manner.
In particular, this thesis covers applications that employ knowledge compilation
techniques to perform incremental constrained sampling for path planning and
combinatorial testing, as well as model counting for pseudo-boolean formulas. The
three key pillars of the ERA framework for scaling up knowledge compilation ap-
plications are a) E�cient usage of knowledge compilation forms b) Recoverable
approximations whenever appropriate and c) Alternate logic forms for knowledge
compilation applications. Through the demonstration of the key ideas, this thesis
introduces a framework for scaling up applications involving knowledge compilation
techniques.
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The thesis illustrates the ERA framework via prototype implementations – INC
and PBCount. INC is an incremental constrained sampler for Boolean formulas
in conjunctive normal form (CNF) that reduces the number of traversals required
for incremental weight updates. Typical weighted constrained samplers require two
passes for each set of new weights – one annotation pass to compute joint probabilities
and another pass to perform actual sampling according to joint probabilities. In
contrast, INC’s sampling routine combines both passes into a single pass, reducing
the traversal of the compiled representation for more e�ciency. PBCount makes use
of knowledge compilation techniques to perform pseudo-boolean model counting,
changing the typical CNF formulas that existing model counters handle for a more
succinct form. In addition, the thesis also demonstrates the top-down PB counter
design, via the prototype counter PBMC, and show that the design could also benefit
from alternative input logic forms. In both cases, the change in input formats can
reduce the number of variables involved, enabling the counters to scale to instances
that time out if expressed in CNF.
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Chapter 1. Introduction

Chapter 1

Introduction

Knowledge compilation and decision diagrams are fundamental tools in numerous
areas within the computer science community. They started as techniques for
individual communities in the early days and became intertwined in part due
to their complementary nature and heavily overlapping methodologies. Decision
diagrams emerged from hardware verification and computer-aided design as a tool
to perform numerous verification tasks [Bry86]. On the other hand, knowledge
compilation techniques developed from the field of artificial intelligence as tools to
address tractability in propositional reasoning, in particular, to perform tasks such as
probabilistic reasoning and model counting [DM02; BDP03]. In recent years, the two
fields have converged, with numerous types of decision diagrams becoming the target
compilation forms for applications involving knowledge compilation techniques.

Knowledge compilation is a core technique in propositional reasoning, especially
for tasks that are beyond NP-Complete - such as constrained sampling and model
counting which are #P-Complete [Val79]. Knowledge compilation techniques allowed
for the handling of aforementioned queries in runtime that is polynomial to the size
of the target representation form, typically a type of decision diagram or negated
normal form [Dar01; DM02].

However, as knowledge compilation techniques are increasingly popular and
applied in a myriad of di�erent application settings, their limitations also emerge.
Whilst knowledge compilation and decision diagrams are designed to be compact
representations of the assignment spaces of logical formulas and theories, the chal-
lenge is still in scalability especially when handling real-world problems which are
increasingly more complex with advancements in various fields. As such, there is

2



Chapter 1. Introduction

continuous demand for more scalable knowledge compilation techniques and decision
diagram forms, so that the increasingly complex input formulas can be handled with
tractability. In this thesis, we take a journey to explore various alternative ways
to scale knowledge compilation and decision diagram techniques under di�erent
application settings. In particular, we introduce the ERA framework, orthogonal
to the majority of existing techniques to address scalability, for the applications
involving the aforementioned techniques. Existing works mainly focus, in isolation,
on either a) developing more succinct decision diagram forms as targets for knowledge
compilation or b) better encoding of problem formulas and reducing the number of
query calls to knowledge compilation tools. This thesis mainly explores di�erent
ways of increasing scalability by looking at both the application setup as well as the
particular underlying knowledge compilation technique used and optimizing both in
tandem, combining them into a comprehensive framework. To this end, the ERA
framework introduces three pillars of scaling knowledge compilation techniques 1)
e�ective usage of knowledge compilation diagrams 2) recoverable approximations,
and 3) alternative logic inputs for knowledge compilation.

1.1 E�cient Usage of Knowledge Compilation Di-
agrams

In this pillar, this thesis explores how to e�ciently use knowledge compila-
tion diagrams. Although knowledge compilation forms enable downstream tasks
and queries to be handled in polynomial runtime with respect to the size of the
representation i.e. number of nodes of the target decision diagram, the compiled
diagrams themselves tend to be large. As such it would be of interest to use the
compiled diagrams as e�ciently as possible. This thesis demonstrates e�cient usage
of compiled diagrams with two main ideas – a) reducing the number of traversal
of diagrams when performing incremental sampling and b) reusing parts of the
compilation process to handle incremental counting settings. In both settings, the
aim is to reduce the number of diagram compilations required and traversing the
diagrams as little as possible.

The thesis demonstrates the idea with the application of incremental weighted
sampling in the context of test case generation for configurable systems [BLM20;
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YLM22]. The goal would be to generate a predetermined number of test cases via
sampling, for a given configurable system expressed as a propositional formula. This
application scenario comprises two main components, a controller that determines
the sampling distribution and updates it throughout the process, and a sampler
that can handle distribution updates and performs weighted sampling accordingly.
The existing work [BLM20] made use of an o�-the-shelf sampler and was shown to
be less able to amortize the knowledge compilation cost over multiple incremental
sampling rounds. To this end, the thesis introduces the INC sampler [YLM22],
designed for incremental weighted sampling. INC is able to complete a sampling
round with a single pass of the underlying knowledge compilation form instead of the
two passes that the existing sampler requires. Additionally, INC uses an empirically
smaller knowledge compilation form which will be detailed in later chapters. The
two improvements led to much better amortization of compilation cost and overall a
substantially faster incremental sampling routine.

1.2 Recoverable Approximations
In this pillar, the thesis takes the perspective of jointly optimizing the compu-

tation process by looking at both the underlying knowledge compilation technique
involved and the required application output. The thesis demonstrates the idea
via the application of probabilistic routes, whereby the goal would be to sample a
probable path, based on historical data, given start and destination. There are two
main parts to the application, one being the encoding of all possible paths without
loops and the other being the sampling process using knowledge compilation forms.

Existing works on propositional formula encodings of paths in a graph, more
specifically in conjunctive normal form, use O(n log n) and n

2 number of variables
with respect to the number of vertices in graph [Pre03]. The thesis makes the
observation that it is not necessary to encode ordering information of vertices
in the path, as it can be recovered given the start and destination vertices. As
such, the thesis introduces an encoding that uses a linear number of variables
with respect to the number of vertices in the graph, enabling better scalability of
the subsequent knowledge compilation technique. More specifically, the encoding
relaxes the requirement and also includes sets of vertices representing paths along
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with disjoint loop components. The insight is that the disjoint loop components
can also be easily removed as a post-sampling refinement step. In regards to the
sampling process, existing works sample a path iteratively, according to probabilities
conditioned on steps already taken [CSD17]. In contrast, this thesis introduces an
approach that is able to sample an entire path at once [YLM23].

1.3 Knowledge Compilation for Alternative Logic
In this pillar, the thesis studies the impact on scalability when using alternative

logic input formulas for knowledge compilation techniques. In particular, the thesis
demonstrates the scalability of using knowledge compilation techniques for pseudo-
boolean formulas as input instead of the typical propositional formula in conjunctive
normal form. The main motivation is that pseudo-boolean (PB) formulas can express
the same constraints with fewer variables compared to CNF formulas, in particular,
a CNF clause can always be represented with one PB constraint while the converse
is not true [Le +18]. Having fewer variables improves the overall scalability of using
the knowledge compilation techniques for model counting tasks.

Under this pillar, the thesis consists of a line of work on PB model counting that
introduces the PB model counter PBCount [YM24] and its extension PBCount2. The
empirical evaluations demonstrate the potential of alternative logic inputs, namely
that PBCount is able to outperform state-of-the-art propositional model counters by
handling PB input which has substantially fewer variables. In addition, PBCount2
is introduced to support projected PB model counting, analogous to projected CNF
model counting. PBCount2 also shows performance advantages over propositional
model counters, lending credence to the pillar about considering alternative logic
inputs. Furthermore, PBCount2 also demonstrates the combination of alternative
logic and e�cient diagram usage through the support for incremental PB model
counting, as it reuses intermediate KC diagrams to avoid complete recompilations
wherever possible.
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Chapter 2

Preliminaries and Related Work

2.1 Boolean Functions and Associated Tasks

Boolean Formula A Boolean variable can take values true or false. A literal is
either a Boolean variable or its negation. A Boolean formula consists of a series
of Boolean literals connected by binary operators, typically · (conjunction) and ‚

(disjunction). Let F be a Boolean formula. F is in conjunctive normal form (CNF)
if F is a conjunction of clauses, where each clause is a disjunction of literals.

Satisfiability and Model Counting F is satisfiable if there exists an assignment
· of variables of F such that F evaluates to true. We refer to · as a satisfying
assignment of F and denote the set of all · as Sol(F ). Model counting for Boolean
formula F refers to the task of determining |Sol(F )|, and has been shown to be
#P-Complete [Val79].

Projected Model Counting Let F be a formula defined over the set of variables
Var(F ). Let X, Y be subsets of Var(F ) such that X fl Y = ÿ and X fi Y = Var(F ).
The projected model count of F on X refers to the number of assignments of all
variables in X such that there exists an assignment of variables in Y that makes F

evaluate to true [Azi+15].

Constrained Sampling Constrained Sampling refers to the task of sampling
elements from a distribution, typically described using a Boolean formula and a weight
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function. More specifically, constrained sampling refers to the process of sampling
from the space of satisfying assignments of a Boolean formula F i.e. sampling from
Sol(F ). If each satisfying assignment is sampled with uniform probability ( 1

|Sol(F )|),
we refer to the process as uniform sampling. Otherwise, we refer to constrained
sampling in the presence of a weight function as weighted sampling. Jerrum, Valiant,
and Vazirani showed that one could design a uniform sampler which requires only
a polynomial number of queries to an exact model counter [JVV86]. In weighted
sampling, the weight function W assigns a non-negative weight to each literal l of F .
The weight of an assignment · is defined as the product of the weight of its literals.

Incremental SAT Solving Another popular task in the Boolean satisfiability
community is Incremental SAT solving [NR12; NRS14; FBS19; Nad22]. Incremental
SAT solving involves finding satisfying assignments to a user-provided Boolean
formula, typically in CNF, under certain assumptions that users can incrementally
specify. Specifically, users can add and remove CNF clauses to the initially specified
CNF formula. Incremental SAT solving is also useful for cases where users have
to solve a large number of similar CNF formulas and has led to a wide range
of applications such as combinatorial testing, circuit design, and solving string
constraints [Yam+15; Yu+17; Lot+23].

Boolean Formula Preprocessing Boolean formula preprocessing involves sim-
plifying a given formula to reduce runtimes of downstream tasks such as determining
the satisfiability of the formula (SAT-solving) and model counting. Preprocessing
is crucial to modern SAT solvers and model counters’ performance improvements
in recent decades. There are numerous preprocessing techniques introduced over
the years by the research community, some of which are unit propagation, bounded
variable elimination, failed literal probing, and vivification [DG84; Le 01; EB05;
PHS08].

vivification refers to the technique of simplifying the clauses in a Boolean formula
by removing redundant literals. Failed literal probing involves testing if a literal l

leads to unsatisfiability, and adding l̄ if literal l led to unsatisfiability. Unit propa-
gation refers to the process of inferring variable assignments from unit clauses and
propagating the assignments throughout the formula. Bounded variable elimination
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involves removing variables in the formula using resolution and adding the resolvent
clauses to the formula, with the additional restriction that the total number of
clauses does not increase.

2.2 Pseudo Boolean Functions

Pseudo Boolean Formula A PB formula F consists of the conjunction of a set
of one or more PB constraints, each of which is either an equality or inequality.
A PB constraint takes the form qn

i=1 aixi⇤k where x1, ..., xn are Boolean literals,
a1, ..., an, and k are integers, and ⇤ is one of {Ø, =, Æ}. We refer to a1, ..., an as term
coe�cients in the PB constraint, where each term is of the form aixi. k is known as
the degree of the PB constraint. F is satisfiable if there exists an assignment · of all
variables of F such that all its PB constraints evaluate to true. PB model counting
refers to the computation of the number of satisfying assignments of F or in other
words determining |Sol(F )|. It is worth noting that PB model counting is #P-hard,
even if there is only a single constraint of a PB formula in the form of a #Knapsack
problem [Dye+93].

Without loss of generality, it su�ces to focus on PB constraints of the ‘Ø’ form
with only positive term coe�cients. This is because ‘Æ’ type constraints can be
converted to ‘Ø’ type constraints by multiplying both sides of the constraint by
-1. In addition, ‘=’ type constraints can be converted to a pair of ‘Ø’ and ‘Æ’
constraints. Similarly, negative term coe�cients can also be manipulated to positive
coe�cients by negating the term literal using x̄ = 1 ≠ x. In the context of ‘Ø’
type constraints, we use the term gap s to denote the remaining value of degree
under some variable assignment · , that is after substituting the variable assignment
values into the constraint and adjusting the value of degree accordingly. More
specifically for a partial assignment · and an arbitrary PB constraint, the gap of
the constraint is given by k ≠ (q

j:·(¸j)=1 aj), where j : ·(¸j) = 1 indicates all literals
¸ of the constraint that evaluates to true under · . A gap value of 0 or less indicates
that a PB constraint is always satisfied under · , otherwise the constraint is yet to
be satisfied. Another commonly used term for ‘Ø’ PB constraints is slack, which
indicates how close the PB constraint is to being falsified. The slack of a constraint
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under assignment · is defined as (q
j:·(¸j) ”=0 aj) ≠ k, where q

j:·(¸j) ”=0 aj is the sum of
coe�cients of all literals not falsified by · , including unassigned literals.

Relation of Pseudo-Boolean Constraint to CNF Clause Given an arbitrary
CNF clause D, one could always convert D to a PB constraint. Given that D

is of the form xm
i=1 li, where l1, ..., lm are Boolean literals, D can be represented

by a single PB constraint qm
i=1 aili Ø 1 where all coe�cients a1, ..., ai, ...am are 1.

However, there are PB constraints that require many CNF clauses to represent.
An example would be qm

i=1 li Ø k which requires at least k of m literals to be
true. Existing literature established that PB constraints are exponentially more
succinct than CNF clauses [Le +18]. Le Berre et al. showed that PB constraint is
strictly more succinct than cardinality constraint using the example PB constraint
kx + q2k

i=1 xi Ø k, and showing that it requires cardinality constraints that are
clausal, and subsequently used a result from prior work [Dix04] that showed the PB
constraint required exponentially many CNF clauses to represent.

In practice, there are existing techniques to convert PB formulas to CNF formulas.
One notable tool for the conversion of PB to CNF is PBLib [PS15]. PBLib implements
various encodings to convert PB formulas into CNF form, some of which include
cardinality networks, sorting networks, and BDD-based encodings [ES06; Abí+11;
Abí+13]. In the absence of tools that natively handle tasks involving PB formulas,
one could potentially perform PB to CNF conversion and employ one of the many
existing CNF tools for the task.

2.3 Knowledge Compilation and Related Applica-
tions

Knowledge Compilation Knowledge compilation (KC) involves representing
logical formulas as directed acyclic graphs (DAG), which are commonly referred to
as knowledge compilation diagrams [DM02] or knowledge compilation forms. The
goal of knowledge compilation is to allow for tractable computation of certain queries
such as model counting and sampling, typically in polynomial runtime with respect
to the size or number of nodes in the knowledge compilation diagram. Prior studies
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also showed that knowledge compilation forms can be exponential in the number
of variables of the given logical formula [CD97]. Despite the limitation, there are
many well-studied forms of knowledge compilation diagrams such as d-DNNF, SDD,
BDD, ZDD, OBDD, AOBDD, and the likes [Lee59; Bry86; Min93; Dar01; Dar02;
MDM08; Dar11]. In this thesis, we study applications involving Reduced Ordered
Binary Decision Diagram [·] (OBDD[·]) [LLY17] and Algebraic Decision Diagram
(ADD) [Bah+93].

OBDD[·] Lee [Lee59] introduced Binary Decision Diagram (BDD) as a way to
represent Shannon expansion [Boo54]. Bryant introduced fixed variable orderings to
BDDs (known as OBDD) [Bry86] for canonical representation and compression of
BDDs via shared sub-graphs. Lai et al. [LLY17] introduced conjunction nodes to
OBDDs (known as OBDD[·]) [LLY17] to further reduce the size of the resultant
DAG to represent a given Boolean formula.

PROB In the subsequent chapters of this thesis, we introduce a probabilistic vari-
ant of OBDD[·] to perform sampling. We term the variant Probabilistic OBDD[·],
or PROB for simplicity. PROB is a DAG composed of four types of nodes - con-
junction, decision, true and false nodes. The internal nodes of a PROB consist
of conjunction and decision nodes whereas the leaf nodes of the PROB consist of
true and false nodes. A PROB is recursively made up of sub-PROBs that represent
sub-formulas of Boolean formula F . We use VarSet(n) to refer to the set of variables
of F represented by a PROB with n as the root node. Subdiagram(n) refers to the
sub-PROB starting at node n and Parent(n) refers to the immediate parent of node
n in PROB. The PROB structure di�ers from OBDD[·] by including additional
parameters on the edges of decision nodes, allowing for the representation of non-
uniform probability distributions of the represented assignment space. We introduce
the PROB structure in greater detail in Chapter 3.2.

Algebraic Decision Diagram An algebraic decision diagram (ADD), also known
as Multi-Terminal Binary Decision Diagram (MTBDD), is a directed acyclic graph
representation of a function f : 2X

æ S where X is the set of Boolean variables
that f is defined over, and S is an arbitrary set known as the carrier set. We denote
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the function represented by an ADD Â as Func(Â). The internal nodes of ADD
represent decisions on variables x œ X and the leaf nodes represent s œ S. As an
example, an ADD representing 3x1 + 4x2 is shown in Figure 2.1. In the figure, a
dotted arrow from an internal node represents when the corresponding variable is
set to false and a solid arrow represents when it is set to true.

x1

x2 x2

0 4 3 7
Figure 2.1: An ADD representing 3x1 + 4x2 with variable ordering x1, x2

d-DNNF The deterministic decomposable negated normal form (d-DNNF) be-
longs to the negated normal form (NNF) family of representations [DM02], with
determinism and decomposable properties. A negated normal form is a rooted
directed acyclic graph (DAG) of a Boolean formula F , where the leaf nodes are €,
‹, x or x̄, where x œ Var(F ). The internal nodes of NNF represent either · or ‚,
overall forming the representation of F .

Knowledge Compilation Properties Knowledge compilation diagrams are
commonly employed in tasks such as model counting and constrained sampling,
as these task queries can be handled with polynomial runtime with respect to the
size of the knowledge compilation diagram used. Some of the key properties of
knowledge compilation diagrams that are responsible for the e�cient handling of
aforementioned queries are determinism, decomposability, and smoothness.

• Determinism A knowledge compilation diagram has the determinism property
if its internal nodes representing disjunctions are logically disjoint. That is to
say for any internal disjunction nodes, the assignment spaces represented by
each of its child branches are non-overlapping.
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• Decomposability A knowledge compilation diagram has the decomposability
property if its internal nodes representing conjunctions are decomposable.
That is, the variables appearing in each of the child branches of an internal
conjunction node are mutually disjoint.

• Smoothness A knowledge compilation diagram is smooth if the variables
appearing in child branches of internal disjunction nodes are exactly the same.

2.3.1 Existing Model Counting Approaches

Existing approaches to model counting can typically be classified under one of
two paradigms – a) search-based or b) decision-diagram based.

Search-Based Model Counters Among the numerous existing CNF model
counters, we can classify them into two main categories – search-based model
counters and decision diagram-based model counters. Notable existing search-based
model counters include GPMC, Ganak, and SharpSAT-TD [RS17; Sha+19; KJ21].
Search-based model counters work by setting values to variables in a given formula
in an iterative manner, which is equivalent to implicitly exploring a search tree.
In addition, search-based model counters adapt techniques such as sub-component
caching from SAT solving for more e�cient computation. Search-based model
counters are often related to knowledge compilation in that the implicit search tree
explored can be output as a target language in knowledge compilation, thus the
implication would be that search-based model counters can be top-down knowledge
compilers. Examples of such counters include GPMC and D4 [RS17; LM17]. In the
subsequent chapter of this work, we introduce the first search-based exact PB model
counter PBMC [YLM25].

Decision Diagram-Based Model Counter Decision diagram-based model
counters employ knowledge compilation techniques to compile a given formula into
directed acyclic graphs (DAGs) and perform model counting with these DAGs. Some
of the recent decision diagram-based model counters are D4, ExactMC, ADDMC, and
its related variant DPMC [LM17; DPV20a; DPV20b; LMY21]. D4 and ExactMC
are decision diagram-based as well as search-based counters. They compile the
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formula in a top-down manner into the respective decision diagram forms, making
use of techniques adapted from search-based CDCL solvers. In contrast, ADDMC
and DPMC (decision diagram mode) perform bottom-up compilations of algebraic
decision diagrams (ADDs). In subsequent chapters of this thesis, we introduce
decision diagram-based PB model counters PBCount and PBCount2.

2.3.2 Existing Sampling Approaches

KUS [Sha+18] utilizes knowledge compilation techniques, specifically Determin-
istic Decomposable Negation Normal Form (d-DNNF) [Dar02], to perform uniform
sampling in 2 passes of the d-DNNF. Annotation is performed in the first pass,
followed by sampling. WAPS [Gup+19] improves upon KUS by enabling weighted
sampling via parameterization of the d-DNNF. WAPS performs sampling in a similar
manner to KUS, the main di�erence being that the annotation step in WAPS takes
into account the provided weight function.

Existing work such as the Baital framework [BLM20] for test case generation
employed WAPS in settings where the weight function required updates as follows.
The sampling space is first expressed as satisfying assignments of a Boolean for-
mula, which is then compiled into the respective knowledge compilation form. In
the following step, samples are drawn according to the given weight function W .
Subsequently, the weights are updated depending on application logic, and weighted
sampling is performed again. The process is repeated until an application-specific
stopping criterion is met.
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Chapter 3

E�ective Usage of Knowledge Com-
pilation Diagrams

3.1 Motivation
In this chapter, we explore the aspect of using knowledge compilation diagrams ef-

fectively through the classic knowledge compilation application of weighted sampling,
with incremental weight updates. Given a Boolean formula F and weight function
W , weighted sampling involves sampling from the set of satisfying assignments of F

according to the distribution defined by W . Weighted sampling is a fundamental
problem in many fields such as computer science, mathematics, and physics, with
numerous applications. In particular, constrained-random simulation forms the
bedrock of modern hardware and software verification e�orts [KK07].

Sampling techniques are fundamental building blocks, and there has been sus-
tained interest in the development of sampling tools and techniques. Recent years
witnessed the introduction of numerous sampling tools and techniques, from ap-
proximate sampling techniques to uniform samplers SPUR and KUS, and weighted
sampler WAPS [JS96; SSL15; AHT18; Sha+18; Gup+19]. Sampling tools and tech-
niques have seen continuous adoption in many applications and settings [Nav+07;
Goo+14; KW19; BLM20; Peh+20; Bal+21]. The scalability of a sampler is a
consideration that directly a�ects its adoption rate. Therefore, improving scalability
continues to be a key objective for the community focused on developing samplers.

The tight integration of sampling routines in various applications has highlighted
the importance for samplers to handle incremental weight updates over multiple
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sampling rounds, also known as incremental weighted sampling. Existing e�orts
on improving scalability typically focus on single round weighted sampling, and
might have overlooked the incremental setting. In particular, existing approaches
involving incremental weighted sampling typically employ o�-the-shelf weighted
samplers which could lead to less than ideal incremental sampling performance.

In this chapter, we demonstrate the e�ective usage of knowledge compilation
diagrams via a prototype scalable weighted sampler INC. INC is designed from the
ground up to address scalability issues in incremental weighted sampling settings,
in particular drop-in replacement sampler for the Baital framework mentioned in
Chapter 2. The core architecture of INC is based on the knowledge compilation
(KC) paradigm, which seeks to succinctly represent all satisfying assignments of a
Boolean formula with a directed acyclic graph (DAG) [DM02]. In the design of INC,
we make two core decisions that are responsible for outperforming the current state-
of-the-art weighted sampler. Firstly, INC employs PROB (Probabilistic OBDD[·])
knowledge compilation form, based on OBDD[·] [LLY17], that is substantially
smaller in practice than the KC diagram, deterministic decomposable negation
normal form (d-DNNF), used in the prior state-of-the-art approaches. Secondly,
INC is designed to perform annotation, which refers to the computation of joint
probabilities, in log-space to avoid the slower alternative of using arbitrary precision
math computations.

Given a Boolean formula F and weight function W , INC compiles and stores the
compiled PROB in the first round of sampling. The weight updates for subsequent
incremental sampling rounds are processed without recompilation, amortizing the
compilation cost. Furthermore, for each sampling round, INC simultaneously per-
forms annotation and sampling in a single bottom-up pass of the PROB, achieving
speedup over existing approaches. We observed that INC is significantly faster than
the existing state-of-the-art in the incremental sampling routine. In our empirical
evaluations, INC achieved a median of 1.69◊ runtime improvement over the state-
of-the-art weighted sampler, WAPS [Gup+19]. Additional performance breakdown
analysis supports our design choices in the development of INC. In particular, PROB
is on median 4.64◊ smaller than the KC diagram used by the competing approach,
and log-space annotation computations are on median 1.12◊ faster than arbitrary
precision computations. Furthermore, INC demonstrated significantly better han-
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dling of incremental sampling rounds, with incremental sampling rounds to be on
median 5.9% of the initial round, compared to 67.6% for WAPS.

3.2 PROB: - Probabilistic OBDD[·]
In this section, we introduce the structure of PROB, a probabilistic variant of

OBDD[·], in greater detail as mentioned in Chapter 2. To recap, PROB is a DAG
composed of four types of nodes - conjunction, decision, true and false nodes. A
PROB is recursively made up of sub-PROBs that represent sub-formulas of Boolean
formula F . We use VarSet(n) to refer to the set of variables of F represented by
a PROB with n as the root node. Subdiagram(n) refers to the sub-PROB starting
at node n and Parent(n) refers to the immediate parent of node n in PROB. A
PROB representation can be created from an OBDD[·] by augmenting the latter
with additional parameters which we detailed in Section 3.2.2. Additionally, the
compilation of Boolean formula to OBDD[·] can be achieved using existing o�-the-
shelf compiler in KCBox [LMY25].

3.2.1 PROB Structure

Conjunction node (·-node) A ·-node nc represents conjunctions in the assign-
ment space. There are no limits to the number of child nodes that nc can have.
However, the set of variables (VarSet(·)) of each child node of nc must be disjoint.
An example of a ·-node would be n2 in Figure 3.1. Notice that VarSet(n4) = {z}

and VarSet(n5) = {y} are disjoint.

Decision node A decision node nd represents decisions on the associated Boolean
variable Var(nd) in Boolean formula F that the PROB represents. A decision node can
have exactly two children - lo-child (Lo(nd)) and hi-child (Hi(nd)). Lo(nd) represents
the assignment space when Var(nd) is set to false and Hi(nd) represents otherwise.
◊ndhi

and ◊ndlo
refer to the parameters associated with the edge connecting decision

node nd with Hi(nd) and Lo(nd) respectively in a PROB. Node n1 in Figure 3.1 is a
decision node with Var(n1) = x, Hi(n1) = n3 and Lo(n1) = n2.
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True and False nodes True (€) and false (‹) nodes are leaf nodes in a PROB.
Let · be an assignment of all variables of Boolean formula F and let PROB Â

represent F . · corresponds to a traversal of Â from the root node to leaf nodes.
The traversal follows · at every decision node and visits all child nodes of every
conjunction node encountered along the way. · is a satisfying assignment if all parts
of the traversal eventually lead to the true node. · is not a satisfying assignment if
any part of the traversal leads to the false node. With reference to Figure 3.1, let
·1 = {x, y, ¬z} and ·2 = {x, y, z}. For ·1, the traversal would visit n1, n3, n6, n7, n9,
and ·1 is a satisfying assignment since the traversal always leads to € node (n9).
As a counter-example, ·2 is not a satisfying assignment with its corresponding
traversal visiting n1, n3, n6, n7, n8, n9. ·2 traversal visits ‹ node (n8) because
variable z ‘æ true in ·2 and Hi(n6) is node n8.

x

· ·

y zz y

€‹

n1

n2 n3

n4 n5 n6 n7

n8 n9

Figure 3.1: A smooth PROB Â1 with 9 nodes, n1, ..., n9, representing F = (x ‚ y) ·

(¬x ‚ ¬z). Branch parameters are omitted

3.2.2 PROB Parameters

In the PROB structure, each decision node nd has two parameters ◊Lo(nd) and
◊Hi(nd), associated with the two branches of nd, which sums up to 1. ◊Lo(nd) is the
normalized weight of the literal ¬Var(nd) and similarly, ◊Hi(nd) is that of the literal
Var(nd). One can view ◊Lo(nd) to be the probability of picking ¬Var(nd) and ◊Hi(nd)

to be that of picking Var(nd) by the determinism property introduced later. Let xi

be Var(nd). Given a weight function W :

◊Lo(nd) = W (¬xi)
W (¬xi) + W (xi)

◊Hi(nd) = W (xi)
W (¬xi) + W (xi)
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3.2.3 PROB Properties

The PROB structure has important properties such as determinism and decom-
posability. In addition to the determinism and decomposability properties, we ensure
that PROBs used in this work have the smoothness property through a smoothing
process (Algorithm 3.1).

Property 1 (Determinism). For every decision node nd, the set of satisfying
assignments represented by Hi(nd) and Lo(nd) are logically disjoint.

Property 2 (Decomposability). For every conjunction node nc, VarSet(ci)flVarSet(cj) =
ÿ for all ci and cj where ci, cj œ Child(nc) and ci ”= cj.

Property 3 (Smoothness). For every decision node nd, VarSet(Hi(nd)) = VarSet(Lo(nd)).

3.2.4 Joint Probability Calculation with PROB

In Section 3.2.2, we mention that one can view the branch parameters as the
probability of choosing between the positive and negative literal of a decision node.
Notice that because of the decomposability and determinism properties of PROB, it
is straightforward to calculate the joint probabilities at every given node. At each
conjunction node nc, since the variable sets of the child nodes of nc are disjoint by
decomposability, the joint probability of nc is simply the product of joint probabilities
of each child node. At each decision node nd, there are only two possible outcomes
on Var(nd) - positive literal Var(nd) or negative literal ¬Var(nd). By determinism
property, the joint probability is the sum of the two possible scenarios. Formally,
the calculations for joint probabilities P

Õ at each node in PROB are as follows:

P
Õ of ·-node nc =

Ÿ

cœChild(nc)
P

Õ(c) (EQ1)

P
Õ of decision-node nd = ◊Lo(nd) ◊ P

Õ(Lo(nd)) (EQ2)

+ ◊Hi(nd) ◊ P
Õ(Hi(nd))

For true node n, P
Õ(n) = 1 because it represents satisfying assignments when

reached. In contrast P
Õ(n) = 0 when n is a false node as it represents non-satisfying
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assignments. In Proposition 2, we show that weighted sampling is equivalent to
sampling according to joint probabilities of satisfying assignments of a PROB.

3.3 INC - Sampling from PROB
In this section, we introduce INC - a bottom-up algorithm for weighted sampling

on PROB. We first describe INC for drawing one sample and subsequently describe
how to extend INC to draw k samples at once. We also provide proof of correct-
ness that INC is indeed performing weighted sampling. As a side note, samples
are drawn with replacement, in line with the existing state-of-the-art weighted
sampler [Gup+19].

3.3.1 Preprocessing PROB

In the main sampling algorithm (Algorithm 3.2) to be introduced later in this
section, the input is a smooth PROB. As a preprocessing step, we introduce Smooth
algorithm that takes in a PROB Â and performs smoothing.

The Smooth algorithm processes the nodes in the input PROB Â in a bottom-up
manner while keeping track of VarSet(n) for every node n in Â using a map Ÿ. True
and false nodes have ÿ as they are leaf nodes and do not represent any variables. At
each conjunction node, its variable set is the union of variable sets of its child nodes.

The smoothing happens at decision node n in Â when VarSet(Lo(n)) and
VarSet(Hi(n)) do not contain the same set of variables as shown by lines 8 and 16
of Algorithm 3.1. In the smoothing process, a new conjunction node (lcNode for
Lo(n) and rcNode for Hi(n)) is created to replace the corresponding child of n, with
the original child node now set as a child of the conjunction node. Additionally, for
each of the missing variables v, a decision node representing v is created and added
as a child of the respective conjunction node. The decision nodes created during
smoothing have both their lo-child and hi-child set to the true node. To reduce
memory footprint, we check if there exists the same decision node before creating it
in the checkMakeTrueDecisionNode function.

As an example, we refer to Â2 in Figure 3.2. It is obvious that Â2 is not smooth,
because VarSet(Lo(n1)) = {y} and VarSet(Hi(n1)) = {z}. In the smoothing process,
we replace Lo(n1) with a new conjunction node n2 and add a decision node n4
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Algorithm 3.1: Smooth - returns a smoothed PROB
Input: PROB Â

Output: smooth PROB
1: Ÿ Ω initMap();
2: for node n of Â in bottom-up order do
3: if n is true node or false node then
4: Ÿ[n] Ω ÿ;
5: else if n is ·-node then
6: Ÿ[n] Ω unionVarSet(Child(n), Ÿ);
7: else
8: if Ÿ[Hi(n)] ≠ Ÿ[Lo(n)] ”= ÿ then
9: lset Ω Ÿ[Hi(n)] ≠ Ÿ[Lo(n)];

10: lcNode Ω new·-node();
11: lcNode.addChild(Lo(n));
12: for var v in lset do
13: dNode Ω checkMakeTrueDecisionNode(v) ;
14: lcNode.addChild(dNode);
15: Lo(n) ΩlcNode;
16: if Ÿ[Lo(n)] ≠ Ÿ[Hi(n)] ”= ÿ then
17: rset Ω Ÿ[Lo(n)] ≠ Ÿ[Hi(n)];
18: rcNode Ω new·-node();
19: rcNode.addChild(Hi(n));
20: for var v in rset do
21: dNode Ω checkMakeTrueDecisionNode(v) ;
22: rcNode.addChild(dNode);
23: Hi(n) ΩrcNode;
24: Ÿ[n] Ω Var(n) fi unionVarSet({Hi(n), Lo(n)});
25: return Â

representing missing variable z, with both child set to true node n9. We repeat the
steps for Hi(n1) to arrive at PROB Â1 in Figure 3.1.

3.3.2 Sampling Algorithm

INC takes a PROB Â representing Boolean formula F and draws a sample from
the space of satisfying assignments of F , the process is illustrated by Algorithm 3.2.
INC performs sampling in a bottom-up manner while integrating the annotation
process in the same bottom-up pass. Since we want to sample from the space
of satisfying assignments we can ignore false nodes in Â entirely by considering a
sub-DAG that excludes false nodes and edges leading to them, as shown by line 3. As
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Figure 3.2: A PROB Â2 representing Boolean formula F = (x ‚ y) · (¬x ‚ ¬z),
branch parameters are omitted

Algorithm 3.2: INC - returns a satisfying assignment based on PROB Â

parameters
Input: smooth PROB Â

Output: a sampled satisfying assignment
1: cache ’ Ω initCache() ; Û Algorithm uses 2 caches, ’ and Ï

2: joint prob cache Ï Ω initCache();
3: Â

Õ
Ω hideFalseNode(Â);

4: for node n of Â
Õ in bottom-up order do

5: if n is true node then
6: ’[n] Ω ÿ;
7: Ï[n] Ω 1;
8: else if n is ·-node then
9: ’[n] Ω unionChild(Child(n), ’);

10: Ï[n] Ω
r

cœChild(n) Ï[c];
11: else
12: plo Ω ◊Lo(n) ◊ Ï[Lo(n)];
13: phi Ω ◊Hi(n) ◊ Ï[Hi(n)];
14: pjoint Ω plo + phi;
15: Ï[n] Ω pjoint;
16: r Ω x ≥ binomial(1,

phi
pjoint

);
17: if r is 1 then
18: ’[n] Ω ’[Hi(n)] fi Var(n);
19: else
20: ’[n] Ω ’[Lo(n)] fi ¬Var(n);
21: return ’[rootnode(Â)]

an example, hideFalseNode when applied to Â1 in Figure 3.1 would remove node n8
and the edges immediately leading to it. Next, INC processes each of the remaining
nodes in bottom-up order while keeping two caches - ’ to store the partial samples
from each node, Ï to store the joint probability at each node. INC starts with ÿ at
the true node since there is no associated variable.

At each conjunction node, INC takes the union of the child nodes in line 9. Using
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n2 in Figure 3.1 as an example, if sample drawn at n4 is ’[n4] = {¬z} and at n5
is ’[n5] = {y}, then unionChild(Child(n2), ’) = {y, ¬z}. At each decision node n,
a decision on Var(n) is sampled from lines 16 to 20. We first calculate the joint
probabilities, plo and phi of choosing ¬Var(n) and choosing Var(n). Subsequently, we
sample decision on Var(n) using a binomial distribution in line 16 with the probability
of success being the joint probability of choosing Var(n). After processing all nodes,
the sampled assignment is the output at root node of Â. In this work, we implemented
the computations in lines 10 and 12 to 14 of Algorithm 3.2 in log space, which we
detail in Section 3.3.3.

Extending INC to k samples It is straightforward to extend the single sample
INC shown in Algorithm 3.2 to draw k samples in a single pass, where k is a user-
specified number. At each node, we have to store a list of k independent copies
of partial assignments drawn in ’. At each conjunction node nc, we perform the
same union process in line 9 of Algorithm 3.2 for child outputs in the same indices
of the respective lists in ’. More specifically, if nc has child nodes cx and cy, the
outputs of index i are combined to get the output of nc at index i. This process
is performed for all indices from 1 to k. At each decision node nd, we now draw k

independent samples instead of a single sample from the binomial distribution as
shown in line 16. The sampling step in lines 16 to 20 are performed independently
for the k random numbers. There is no change necessary for the calculation of joint
probabilities in Algorithm 3.2 as there is no change in literal weights.

Incremental sampling Given a Boolean formula F and weight function W , INC
performs incremental sampling with the sampling process shown in Figure 3.3. In
the initial round, INC compiles F and W into a PROB Â and performs sampling.
Subsequent rounds involve applying a new set of weights W to Â, typically generated
based on existing samples by the controller [BLM20], and performing weighted
sampling according to the updated weights. The number of sampling rounds is
determined by the controller component, whose logic varies according to application.
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Figure 3.3: INC’s incremental sampling flow

3.3.3 Implementation Decisions

Log-Space Calculations INC performs annotation process - computation of joint
probabilities in log space. This design choice is made to avoid the usage of arbitrary
precision math libraries, which WAPS utilized to prevent numerical underflow after
many successive multiplications of probability values. Using the LogSumExp trick
below, it is possible to avoid numerical underflow.

log(a + b) = log(a) + log(1 + b

a
)

= log(a) + log(1 + exp(log(b) ≠ log(a)))

The joint probability at a decision node nd is given by ◊Lo(nd)◊ joint probability
of Lo(nd)+◊Hi(nd)◊ joint probability of Hi(nd). Notice that if we were to perform the
calculation in log space, we would have to add the two weighted log joint probabilities,
termed plo and phi in Algorithm 3.2. Using the LogSumExp trick, we do not need to
exponentiate plo and phi independently which risks running into numerical underflow.
Instead, we only need to exponentiate the di�erence of plo and phi which is more
numerically stable. Equations EQ1 and EQ2 can be implemented in log space as
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follows:

Q of ·-node nc =
ÿ

cœChild(nc)
Q(c)

Q of decision-node nd = LogSumExp[

log(◊Lo(nd)) + Q(Lo(nd)),

log(◊Hi(nd)) + Q(Hi(nd))]

In the equations above, Q refers to the corresponding log joint probabilities in EQ1
and EQ2. In the experiments section, we detail the runtime advantages of using log
computations compared to arbitrary precision math computations.

Dynamic Annotation In existing state-of-the-art weighted sampler WAPS, sam-
pling is performed in two passes - the first pass performs annotation and the second
pass samples assignments according to the joint probabilities. In INC, we combine
the two passes into a single bottom-up pass performing annotation dynamically
while sampling at each node.

3.3.4 Theoretical Analysis

Proposition 1. Branch parameters of any decision node nd are correct sampling
probabilities, i.e. W (xi) : W (¬xi) = ◊Hi(xi) : ◊Lo(xi) where Var(nd) = xi.

Proof.

W (xi)
W (¬xi)

=
W (xi)

W (xi)+W (¬xi)
W (¬xi)

W (xi)+W (¬xi)
= ◊Hi(xi)

◊Lo(xi)

We start with the ratio of literal weights of x, multiply both numerator and
denominator by W (xi) + W (¬xi) and arrive at the ratio of branch parameters of nd.
Notice that only the ratio matters for sampling correctness and not the absolute
value of weights.

Remark 1. Let nd be an arbitrary decision node in PROB Â. When performing
sampling according to a weight function W , ◊Lo(nd) is the probability of picking
¬Var(nd) and ◊Hi(nd) is that of Var(nd). The determinism property states that the
choice of either literal is disjoint at each decision node.
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Proposition 2. INC samples an assignment · from PROB Â with probability
1
N

r
lœ· W (l), where N is a normalization factor.

Proof. The proof consists of two parts, one for ·-node and another for decision
node.

·-node Let nc be an arbitrary conjunction node in PROB Â. Recall that by
decomposability property, ’ci, cj œ Child(nc) and ci ”= cj, VarSet(ci) fl VarSet(cj) = ÿ.
As such an arbitrary variable xi œ VarSet(nc) only belongs to the variable set of one
child node ci œ Child(nc). Therefore, assignment of xi can be sampled independent
of xj where xj œ VarSet(cj), ’cj ”= ci. Let ·

Õ
ci

be partial assignment for child node
ci œ Child(nc). Notice that each partial assignment ·

Õ
ci

is sampled independently of
others as there are no overlapping variables, hence their joint probability is simply
the product of their individual probabilities. This agrees with the weight of an
assignment being the product of its components, up to a normalization factor.

Decision node Let nd be an arbitrary decision node in PROB Â and xd be Var(nd).
At nd, we sample an assignment of xd based on the parameters ◊Lo(xd) and ◊Hi(xd),
which are probabilities of literal assignment by Proposition 1. By Proposition 1,
one can see that the assignment of xd is sampled correctly according to W . As the
sampling process at nd is independent of its child nodes by the determinism property,
the joint probability of sampled assignment of xd and the output partial assignment
from the corresponding child node would be the product of their probabilities. Notice
that the joint probability aligns with the definition of weight of an assignment being
the product of the weight of its literals, up to a normalization factor.

Since we do not consider the false node and treat it as having 0 probability, we
always sample from satisfying assignments by starting at the true node in bottom-up
ordering. Reconciling the sampling process at the two types of nodes, it is obvious
that any combination of decision and ·-nodes encountered in the sampling process
would agree with a given weight function W up to a normalization factor 1/N .
In fact, N = q

·iœS W (·i) where S is the set of satisfying assignments of Boolean
formula F that Â represents. As mentioned in Proposition 1 proof, normalization
factors do not a�ect the correctness of sampling according to W , and we have
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shown that INC performs weighted sampling correctly under multiplicative weight
functions.

Remark 2. From the proof of Proposition 2, the determinism and decomposability
property is important to ensure the correctness of INC. The smoothness property is
important to ensure that the sampled assignment by INC is complete. For formula
F = (x ‚ y) · (¬x ‚ ¬z), an assignment ·1 sampled from a non-smooth PROB could
be {x, ¬z}. Notice that ·1 is missing assignment for variable y. By performing
smoothing, we will be able to sample a complete assignment of all variables in the
Boolean formula as both child nodes of each decision node n have the same VarSet(·).

3.4 Experiments
We implement INC in Python 3.7.10, using NumPy 1.15 and Toposort pack-

age. In our experiments, we make use of an o�-the-shelf KC diagram compiler,
KCBox [LMY25]. We compared against WAPS [Gup+19] using its default bundled
d-DNNF compilers, D4 [LM17] for non-projected CNF and DSHARP [Mui+12] for
projected CNF. In the later parts of this section, we performed additional compar-
isons against an implementation of INC using the Gmpy2 arbitrary precision math
package (INCAP) to determine the impact of log-space annotation computations.

Our benchmark suite consists of instances arising from a wide range of real-world
applications such as DQMR networks, bit-blasted versions of SMT-LIB (SMT)
benchmarks, ISCAS89 circuits, and configurable systems [Gup+19; BLM20]. For
incremental updates, we rely on the weight generation mechanism proposed in the
context of prior applications of incremental sampling [BLM20]. In particular, new
weights are generated based on the samples from the previous rounds, resulting in
the need to recompute joint probabilities in each round. Keeping in line with prior
work, we perform 10 rounds (R1-R10) of incremental weighted sampling and 100
samples drawn in each round. The experiments were conducted with a timeout of
3600 seconds on clusters with Intel Xeon Platinum 8272CL processors.

In this section, we detail the extensive experiments conducted to understand INC’s
runtime behavior and to compare it with the existing state-of-the-art weighted sam-
pler WAPS [Gup+19] in incremental weighted sampling tasks. We chose WAPS as it
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has been shown to achieve significant runtime improvement over other samplers, and
accordingly has emerged as a sampler of the choice for practical applications [BLM20].
In particular, our empirical evaluation sought to answer the following questions:

RQ 1 How does INC’s incremental weighted sampling runtime performance compare
to current state-of-the-art?

RQ 2 How does using PROB a�ect runtime performance?

RQ 3 How does log-space calculation impact runtime performance?

RQ 4 Does INC correctly perform weighted sampling?
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Figure 3.4: Runtime comparisons between INC and state-of-the-art weighted sampler
WAPS

3.4.1 RQ 1: Incremental Sampling Performance

The scatter plot of incremental sampling runtime comparison is shown in Fig-
ure 3.4, with Figure 3.4a showing runtime comparison for the first round (R1)
and Figure 3.4b showing runtime comparison over 10 rounds. The vertical axes
represent the runtime of INC and the horizontal axes represent that of WAPS. In the
experiments, INC completed 650 out of 896 benchmarks whereas WAPS completed
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674. INC completed 21 benchmarks that WAPS timed out and similarly, WAPS
completed 45 benchmarks that INC timed out. In the experiments, INC achieved a
median speedup of 1.69◊ over WAPS.

Statistic WAPS AVG(R2-10)
WAPS R1

INC AVG(R2-10)
INC R1

WAPS R1
INC R1

WAPS SUM(R2-10)
INC SUM(R2-10)

WAPS Total
INC Total

Mean 0.74 0.064 1.03 15.66 6.12

Std 0.24 0.040 1.47 26.42 10.73

Min 0.22 0.003 0.01 1.37 0.12

25% 0.55 0.031 0.22 3.43 1.01

50% 0.67 0.059 0.44 4.48 1.69

75% 0.92 0.086 0.92 9.38 3.61

Max 1.25 0.188 10.65 172.66 73.96

Table 3.1: Incremental weighted sampling runtime ratio statistics for WAPS and
INC (25% stands for the 25th percentile and all numerators and denominators refer
to the corresponding runtimes)

Further results are shown in Table 3.1. Observe that for runtime taken for R1
(column 3), WAPS is faster and takes around 0.44◊ of INC’s runtime in the median
case. However, INC takes the lead in runtime performance when we examine the
total time taken for the incremental rounds R2 to R10 (column 4). For incremental
rounds, WAPS always took longer than INC, in the median case WAPS took 4.48◊

longer than INC. We compare the average incremental round runtime with the
first round runtime for both samplers in columns 1 and 2. In the median case, an
incremental round for WAPS takes 67% of the time for R1 whereas an incremental

Benchmark Tool R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Total Speed

or-50-5-5-UC-10 WAPS 56.6 56.3 52.5 59.4 52.5 53.6 59.4 53.2 53.4 61.7 558.6 1.0◊
(100, 253) INC 1461.3 7.6 8.4 8.4 8.4 8.4 8.5 8.5 8.4 8.5 1536.3 0.4◊

or-100-20-9-UC-30 WAPS 73.0 69.1 66.7 76.0 66.5 66.9 76.6 66.0 66.9 78.6 706.1 1.0◊
(200, 528) INC 269.5 4.7 4.8 4.8 4.9 5.1 4.8 4.8 4.8 5.1 313.4 2.3◊

s953a_15_7 WAPS 1.7 1.1 1.1 1.2 1.0 1.1 1.2 1.1 1.1 1.3 11.9 1.0◊
(602, 1657) INC 4.9 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 11.5 1.0◊

h8max WAPS 90.3 104.2 92.4 116.0 94.3 94.1 112.9 92.9 94.4 120.4 1011.9 1.0◊
(1202, 3072) INC 34.1 2.1 2.2 2.4 2.3 2.4 2.2 2.4 2.4 2.3 55.7 18.2◊

innovator WAPS 195.5 221.9 201.3 244.4 200.1 206.7 247.2 202.0 202.9 257.4 2179.3 1.0◊
(1256, 50452) INC 32.8 1.6 1.8 1.9 1.9 1.9 1.8 1.9 1.9 1.9 49.4 44.1◊

Table 3.2: Runtime (seconds) breakdowns for each of ten rounds (R1-R10) between
WAPS and INC for benchmarks of di�erent sizes e.g. ‘h8max’ benchmark consists of
1202 variables and 3072 clauses.
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Number of rounds WAPS INC
10 674 650

20 596 649

Table 3.3: Number of completed benchmarks within 3600s, for 10 and 20 round
settings

round for INC only requires 5.9% of the time R1 takes. We show the per round
runtime for 5 benchmarks in Table 3.2 to further illustrate INC’s runtime advantage
over WAPS for incremental sampling rounds, even though both tools reuse the
respective KC diagram compiled in R1. This set of results highlights INC’s superior
performance over WAPS in the handling of incremental sampling settings. INC’s
advantage in incremental sampling rounds led to better overall runtime performance
than WAPS in 75% of evaluations. The runtime advantage of INC would be more
obvious in applications requiring more than 10 rounds of samples.

Therefore, we conducted sampling experiments for 20 rounds to substantiate our
claims that INC will have a larger runtime lead over WAPS with more rounds. Both
samplers are given the same 3600s timeout as before and are to draw 100 samples per
round, for 20 rounds. The number of completed benchmarks is shown in Table 3.3 In
the 20 sampling round setting, INC completed 649 out of 896 benchmarks, timing out
on 1 additional benchmark compared to 10 sampling round setting. In comparison,
WAPS completed 596 of 896 benchmarks, timing out on 78 additional benchmarks
than in the 10 sampling round setting. In addition, WAPS takes on median 2.17◊

longer than INC under the 20 sampling round setting, an increase over the 1.69◊

under the 10 sampling round setting.
The runtime results clearly highlight the advantage of INC for incremental

weighted sampling applications and that INC is noticeably better at incremental
sampling than the current state-of-the-art.

3.4.2 RQ 2: PROB Performance Impacts

We now focus on the analysis of the impact of using PROB compared to d-DNNF
in the design of a weighted sampler. We analyzed the size of both PROB and
d-DNNF across the benchmarks that both tools managed to compile and show the
results in Table 3.4. From Table 3.4, PROB is always smaller than the corresponding
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Statistic
WAPS KC size

INC KC size

Mean 18.92

Std 81.19

Min 1.10

25% 2.94

50% 4.64

75% 12.56

Max 1734.08

Table 3.4: Statistics for number of nodes in d-DNNF (WAPS KC diagram) over
that of smoothed PROB (INC KC diagram). (25% stands for the 25th percentile)

d-DNNF. Additionally, PROB is at median 4.64◊ smaller than the corresponding
d-DNNF, and that for PROB is an order of magnitude smaller for at least 25% of the
benchmarks. As such, PROB emerges as the clear choice of knowledge compilation
diagram used in INC, owing to its compactness in practice which leads to fast
incremental sampling runtimes.

3.4.3 RQ 3: Log-space Computation Performance Impacts

Statistic
INCAP runtime
INC runtime

Mean 1.14

Std 0.16

Min 0.70

25% 1.02

50% 1.12

75% 1.25

Max 1.89

Table 3.5: Runtime comparison of INC and INCAP

In the design of INC, we utilized log-space computations to perform annotation
computations as opposed to naively using arbitrary precision math libraries. In
order to analyze the impact of this design choice, we implemented a version of
INC where the dynamic annotation computations are performed using arbitrary
precision math in a similar manner as WAPS. We refer to the arbitrary precision
math version of INC as INCAP. As an ablation study, we compare the runtime of both
implementations across all the benchmarks and show the comparison in Table 3.5.
The statistics shown is for the ratio of INCAP runtime to INC runtime, a value of
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1.12 means that INCAP takes 1.12◊ that of INC for the corresponding statistics.
The results in Table 3.5 highlight the runtime advantages of our decision to

use log-space computations over arbitrary precision computations. INC has faster
runtime than INCAP in majority of the benchmarks. INC displayed a minimum of
0.70◊, a median of 1.12◊, and a max of 1.89◊ speedup over INCAP. Furthermore,
INCAP timed out on 2 more benchmarks compared to INC. It is worth emphasizing
that log-space computations do not introduce any error, and our usage of them
sought to improve on the naive usage of arbitrary precision math libraries.

3.4.4 RQ 4: INC Sampling Quality

We conducted additional evaluation to further substantiate evidence of INC’s
sampling correctness, apart from theoretical analysis in Section 3.3.4. Specifically,
we compared the samples from INC and WAPS, which has proven theoretical
guarantees [Gup+19], on the ‘case110’ benchmark that is extensively used by prior
works [Sha+18; AHT18; Gup+19]. We gave each positive literal weight of 0.75 and
each negative literal 0.25, and subsequently drew one million samples using both
INC and WAPS and compare them in Figure 3.5.

Figure 3.5 shows the distributions of samples drawn by INC and WAPS for
‘case110’ benchmark. A point (x, y) on the plot represents y number of unique
solutions that were sampled x times in the sampling process by the respective
samplers. The almost perfect match between the weighted samples drawn by INC
and WAPS, coupled with our theoretical analysis in Section 3.3.4, substantiates our
claim of INC’s correctness in performing weighted sampling. Additionally, it also
shows that INC can be a functional replacement for existing state-of-the-art sampler
WAPS, given that both have theoretical guarantees.

3.5 Summary
In this chapter, we introduced a bottom-up weighted sampler, INC, optimized for

incremental weighted sampling, in line with one of the three pillar of our framework,
specifically on the e�cient usage of knowledge compilation diagrams. By exploiting
the succinct structure of PROB and log-space computations, INC demonstrated
superior runtime performance in a series of extensive benchmarks when compared to
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Figure 3.5: Distribution comparison for Case110, with log scale for both axes

the current state-of-the-art weighted sampler WAPS. In addition, INC has a single
pass sampling routing as opposed to the existing state-of-the-art which performs
annotation and sampling in separate passes, contributing to INC’s performance lead
in our evaluations. In the incremental sampling setting, the compilation costs of KC
diagrams are amortized, and since INC is substantially better at handling incremental
updates, it thus took the overall runtime lead from WAPS in the majority of the
benchmarks. Extrapolating the trend, it is most likely that INC would have a
larger runtime lead over WAPS for applications requiring more than 10 sampling
rounds. The runtime breakdown demonstrates that INC is able to amortize the
compilation time over the incremental sampling rounds, with subsequent rounds
being much faster than WAPS. In summary, we demonstrate in this chapter the
aspect of e�ciently using knowledge compilation diagrams through picking a more
succinct diagram form and a more optimized incremental sampling routine.
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Chapter 4

Recoverable Approximations With
Knowledge Compilation Diagrams

4.1 Motivation
This chapter illustrates the perspective of applying knowledge compilation tech-

niques in a more scalable manner, by looking at the application scenario and relaxing
the information that the underlying knowledge compilation diagram needs to repre-
sent. In particular, the perspective is demonstrated through the task of constrained
sampling of valid routes from historical data. The core idea lies in the observation
that ordering information does not need to be represented in the knowledge compi-
lation diagram, but can instead be recovered via a refinement step with knowledge
of start and destination.

The past decade has witnessed an unprecedented rise of the service economy, best
highlighted by the prevalence of delivery and ride-sharing services [CM17; Col20].
For operational and financial e�ciency, a fundamental problem for such companies
is the inference and prediction of routes taken by the drivers. When a driver receives
a job to navigate from location A to B, the ride-sharing app needs to predict the
route in order to determine: (1) the trip time, which is an important consideration
for the customer, (2) the fare, an important consideration for both the driver and
the customer, and (3) the trip experience since customers feel safe when the driver
takes the route described in their app [BRJ15; WFY18]. However, the reality is that
drivers and customers have preferences, as such the trips taken are not always the
shortest possible by distance or time [LKH06]. To this end, delivery and ride-sharing
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service companies have a need for techniques that can infer the distribution of
routes and e�ciently predict the likely route a driver takes for a given start and end
location.

Routing, a classic problem in computer science, has traditionally been approached
without considering the learning of distributions [Ahu+90; RSL74]. However, Choi,
Shen, and Darwiche demonstrated through a series of papers that the distribution of
routes can be conceptualized as a structured probability distribution (SPD) given the
underlying combinatorial structure [CSD17; SCD18; She+19]. Decision diagrams,
which are particularly well-suited for representing SPDs, have emerged as the state-
of-the-art approach for probability-guided routing. The decision diagram-based
approach allows for learning of SPDs through the use of decision diagrams augmented
with probability values, followed by a stepwise process for uncovering the route.

However, scalability remains a challenge when using decision diagrams to reason
about route distributions, particularly for large road networks. Existing works
address this concern in various ways, such as through the use of hierarchical dia-
grams [CSD17] and Structured Bayesian Networks [SCD18]. Choi et al. [CSD17]
partition the structured space into smaller subspaces, with each subspace’s SPD
being represented by a decision diagram. Shen et al. used Structured Bayesian
Networks to represent conditional dependencies between sets of random variables,
with the distribution within each set of variables represented by a conditional Proba-
bilistic Sentential Decision Diagram (PSDD) [SCD18; She+19]. Despite these e�orts,
the scalability of decision diagrams for routing, in terms of space complexity, remains
an open question [CVD15].

This chapter illustrates how to address scalability challenges faced by current
state-of-the-art approaches via the introduction of an approach termed ProbRoute.
The contributions are two-fold: first, ProbRoute focuses on minimizing the size of the
compiled diagram by relaxation and refinement. In particular, instead of learning
distributions over the set of all valid routes, ProbRoute learns distributions over
an over-approximation, and performs sampling followed by refinement to output a
valid route. Secondly, instead of a stepwise sampling procedure, ProbRoute performs
one-pass sampling by adapting the existing sampling algorithm [YLM22] to perform
conditional sampling. Empirical evaluations over benchmarks arising from real-world
road network data demonstrate that ProbRoute can handle real-world instances that
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were clearly beyond the reach of the state-of-the-art. Furthermore, on instances
that can be handled by prior state-of-the-art, ProbRoute achieves a median of 10◊

runtime performance improvements.

4.2 Background
In the remaining parts of this chapter, we will discuss how to encode simple,

more specifically simple trips, in a graph using Boolean formulas. In addition, we
will also discuss decision diagrams and probabilistic reasoning with them. In this
chapter, we use the Probabilistic OBDD[·] (PROB) [YLM22] decision diagram, for
which there are existing e�cient sampling algorithm. We will discuss the PROB
decision diagram in detail in the subsequent section. To avoid ambiguity, we use
vertices to refer to nodes of road network graphs and nodes to refer to nodes of
decision diagrams.

4.2.1 Preliminaries

Simple Trip Let G be an arbitrary undirected graph, a path on G is a sequence of
connected vertices v1, v2, ..., vm of G where ’

m≠1
i=1 vi+1 œ N(vi), with N(vi) referring

to neighbours of vi. A path fi does not contain loops if ’vi,vjœfivi ”= vj. fi does not
contain detour if ’vi,vj ,vk,vlœfivj ”œ N(vi) ‚ vk ”œ N(vi) ‚ vl ”œ N(vi) i.e. there is no
vertex in fi that has three of its neighbour also included in fi. Path fi is a simple path
if it does not contain loops. A simple path fi is a simple trip if it does not contain
detours. We denote the set of all simple trips in G as SimpleTrip(G). In Figure 4.1,
d-e-h is a simple trip whereas d-e-f-c-b-e-h and d-e-f-i-h are not because they contain
a loop and a detour respectively. We use Term(fi) to refer to the terminal vertices
of path fi i.e. both the start and destination vertex of a path.

Probabilistic Routing Problem In this chapter, we tackle the probabilistic
routing problem which we define as the following. Given a graph G of an underlying
road network, training and testing data Dtrain, Dtest, start and end vertices s, t,
sample path fi from s to t such that Á-match rate with ground truth path fi

Õ
œ Dtest

is maximized. We define Á-match rate between fi and fi
Õ as |Uclose(fi)| ÷ |U | where
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a b c

d e f

g h i

Figure 4.1: A 3 ◊ 3 grid graph

U is the set of vertices of fi
Õ and Uclose(fi) is the set of vertices of fi

Õ that are within
Á euclidean distance away from the nearest vertex in fi. More details on Á will be
discussed in Section 4.4.

4.2.2 Related Work

The continuous pursuit of compact representations by the research community
has resulted in several decision diagram forms over the years. Some of the decision
diagram forms include AOMDD for multi-valued variables, OBDD and SDD for
binary variables [Bry86; Dar11; MDM08]. Both OBDD and SDD are canonical
representations of Boolean formulas given variable ordering for OBDD and Vtree for
SDD respectively. OBDD [Bry86] is comprised of internal nodes that correspond to
variables and leaf nodes that correspond to € or ‹. Each internal node of OBDD
has exactly two child and represents the Shannon decomposition [Boo54] on the
variable represented by that internal node. SDDs are comprised of elements and
nodes [Dar11]. Elements represent the conjunction of a prime and a sub, each of
which can either be a terminal SDD or a decomposition SDD. A decomposition
SDD is represented by a node with child elements representing the decomposition.
A terminal SDD can be a literal, € or ‹. The decompositions of SDDs follow that
of the respective Vtree, which is a full binary decision tree of Boolean variables
in the formula. In this chapter, we use the OBDD[·] [LLY17] variant of OBDD,
which is shown to be theoretically incomparable but empirically more succinct than
SDDs [LLY17].

A related development formulates probabilistic circuits [CVB20], based on sum-
product networks [PD11] and closely related to decision diagrams, as a special class
of neural networks known as Einsum networks [Peh+20]. In the Einsum network
structure, leaf nodes represent di�erent gaussian distributions. By learning from

36



Chapter 4. Recoverable Approximations With Knowledge Compilation Diagrams

data, Einsum networks are able to represent SPDs as weighted sums and mixtures
of gaussian distributions. Einsum networks address scalability by utilizing tensor
operations implemented in existing deep learning frameworks such as PyTorch
[Pas+19]. Our work di�ers from the Einsum network structure, we require the
determinism property for decision diagrams whereas the underlying structure for
Einsum network lacks this property. We will introduce the determinism property in
the following section.

Various Boolean encodings have been proposed for representing paths within
a graph, including Absolute, Compact, and Relative encodings [Pre03]. These
encodings capture both the vertices comprising the path and the ordering information
of said vertices. However, these encodings necessitate the use of polynomial number
of Boolean variables, specifically |V |

2, |V |log2|V |, and 2|V |
2 variables for Absolute,

Compact, and Relative encoding respectively. While these encodings accurately
represent the space of paths within a graph, they are not e�cient and lead to high
space and time complexity for downstream routing tasks.

Choi, Shen, and Darwiche demonstrated over a series of papers that the dis-
tribution of routes can be conceptualized as a structured probability distribution
(SPD) given the underlying combinatorial structure [CSD17; SCD18; She+19]. This
approach, referred to as the ‘CSD’ approach in the rest of this paper, builds on
top of existing approaches that represent paths using zero-suppressed decision dia-
grams [Knu05; Ino+16; Kaw+17]. The CSD approach utilizes sentential decision
diagrams to represent the SPD of paths and employs a stepwise methodology for
handling path queries. Specifically, at each step, the next vertex to visit is deter-
mined to be the one with the highest probability, given the vertices already visited
and the start and destination vertices. While the CSD approach has been influential
in its incorporation of probabilistic elements in addressing the routing problem, it is
not without limitations. In particular, there are two main limitations (1) there are
no guarantees of completion, meaning that even if a path exists between a given start
and destination vertex, it may not be returned using the CSD approach [CSD17].
(2) the stepwise routing process necessitates the repeated computation of conditional
probabilities, resulting in runtime ine�ciencies.

In summary, the limitations of prior works are Boolean encodings that require a
high number of variables, lack of routing task completion guarantees, and numerous
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conditional probability computations.

4.2.3 PROB: Probabilistic OBDD[·]

We use the PROB (Probabilistic OBDD[·]) decision diagrams introduced in
Chapter 3.2, and adopt the same notations for consistency.

Notations We use nodes to refer to nodes in PROB Â and vertices to refer to
nodes in graph G(V, E) to avoid ambiguity. Child(n) refers to the children of node
n. Hi(n) refers to the hi child of decision node n and Lo(n) refers to the lo child of
n. ◊Hi(n) and ◊Lo(n) refer to the parameters associated with the edge connecting
decision node n with Hi(n) and Lo(n) respectively in a PROB. Var(n) refers to the
associated variable of decision node n. VarSet(n) refers to the set of variables of F

represented by a PROB with n as the root node. Subdiagram(n) refers to the PROB
starting at node n. Parent(n) refers to the immediate parent nodes of n in PROB.

x

y z

€‹

n1

n2 n3

n4 n5

◊Hi(n2)◊Lo(n2) ◊Hi(n3) ◊Lo(n3)

◊Lo(n1) ◊Hi(n1)

Figure 4.2: A PROB Â1 representing F = (x ‚ y) · (¬x ‚ ¬z)

PROB Structure An assignment of Boolean formula F is represented by a
top-down traversal of a PROB compiled from F . For example, we have a Boolean
formula F = (x ‚ y) · (¬x ‚ ¬z), represented by the PROB Â1 in Figure 4.2. When
x is assigned true and z is assigned false, F will evaluate to true. If we have a
partial assignment · , we can perform inference conditioned on · if we visit only
the branches of decision nodes in Â that agree with · . This allows for conditional
sampling, which we discuss in Section 4.3.
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PROB inherits important properties of OBDD[·] that are useful to our algorithms
in later sections. The properties are - determinism, decomposability, and smoothness.

In the rest of this chapter, all mentions of PROB refer to smooth PROB. Smooth-
ness can be achieved via the smooth algorithm, Algorithm 3.1, introduced in Chap-
ter 3 [YLM22]. It is worth noting that we always create true decision nodes instead
of checking via checkMakeTrueDecisionNode at lines 13 and 21 of Algorithm 3.1.

4.3 Approach
In this section, we introduce our approach, ProbRoute, which addresses the

aforementioned limitations of existing methods using (1) a novel relaxed encoding
that requires a linear number of Boolean variables and (2) a single-pass sampling and
refinement approach which provides completeness guarantees. The flow of ProbRoute
is shown in Figure 4.3.

Encode
(Sec 4.3.1)

Compile into
OBDD[·]

Learn parameters
(Sec 4.3.2)

Sample and
refinement
(Sec 4.3.3)

Graph

Data

Query Sampled Trip

Figure 4.3: Flow of ProbRoute, with red rectangles indicating this work. For
compilation, we use existing o�-the-shelf techniques.

In our approach, we first use our relaxed encoding to encode SimpleTrip(G)
of graph G into a Boolean formula. Next, we compile the Boolean formula into
OBDD[·]. In order to learn from historical trip data, we convert the data into
assignments. Subsequently, the OBDD[·] is parameterized into PROB Â and the
parameters are learned from data. Finally to sample trips from start vertex vs

to destination vertex vt, we create a partial assignment ·
Õ with the variables that

indicate vs and vt are terminal vertices set to true. The ProbSample algorithm,
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algorithm 4.4, takes ·
Õ as input and samples a set of satisfying assignments. Finally,

in the refinement step, a simple trip fi is extracted from each satisfying assignment
· using depth-first search to remove disjoint loop components.

4.3.1 Relaxed Encoding

In this work, we present a novel relaxed encoding that only includes vertex
membership and terminal information. Our encoding only requires a linear (2|V |)
number of Boolean variables, resulting in more succinct decision diagrams and
improved runtime performance for downstream tasks. In relation to prior encodings,
we observed that the ordering information of vertices can be inferred from the
graph given a set of vertices and the terminal vertices, thus enabling us to exclude
ordering information in our relaxed encoding. Our relaxed encoding represents
an over-approximation of trips in SimpleTrip(G) for graph G(V, E) using a linear
number of Boolean variables with respect to |V |. We discuss the over-approximation
in later parts of this section.

Our encoding uses two types of Boolean variables, n-type and s-type variables.
Each vertex v œ V in graph G(V, E) has a corresponding n-type and s-type variable.
The n-type variable indicates if vertex v is part of a trip and s-type variable indicates
if v is a terminal vertex of the trip. Our encoding is the conjunction of the five types
of clauses over all vertices in graph G as follows.

fl

iœV

si (H1)

fi

iœV

[ni ≠æ
fl

jœadj(i)
nj] (H2)

fi

i,j,kœV,
i”=j ”=k

(¬si ‚ ¬sj ‚ ¬sk) (H3)

fi

iœV

si ≠æ ni ·
fi

j,kœadj(i),j ”=k

(¬nj ‚ ¬nk) (H4)

fi

i,jœV,jœadj(i)
[ni · nj ≠æ si ‚ [(

fl

kœadj(i),
k ”=j ”=i

nk) ·
fi

l,mœadj(i),
l,m”=j

(¬nl ‚ ¬nm)]] (H5)

A simple trip fi in graph G has at least one terminal vertex and at most two
terminal vertices, described by encoding components H1 and H3 respectively. At
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each terminal vertex vi of fi, there can only be at most 1 adjacent vertex of vi that
is also part of fi and this is encoded by H4. For each vertex vi in fi, at least one
of their adjacent vertices is in fi regardless if vi is a terminal vertex or otherwise,
this is captured by H2. Finally, H5 encodes that if a given vertex vi and one of its
adjacent vertices are part of fi, then either another neighbour vertex of vi is part of
fi or vi is a terminal vertex.

Definition 1. Let M : SimpleTrip(G) ‘æ Sol(F ) such that for a given trip fi œ

SimpleTrip(G), · = M(fi) is the assignment whereby the n-type variables of all
vertices v œ fi and the s-type variables of v œ Term(fi) are set to true. All other
variables are set to false in · .

We refer to our encoding as relaxed encoding because the solution space of
constraints over-approximates the space of simple trips in the graph. Notice that
while all simple trips correspond to a satisfying assignment of the encoding, they
are not the only satisfying assignments. Assignments corresponding to a simple
trip fi with disjoint loop component — also satisfy the constraints. The intuition
is that — introduces no additional terminal vertices, hence H1, H3, and H4 remain
satisfied. Since the vertices in — always have n-type variables of exactly two of its
neighbours set to true, H5 and H2 remain satisfied. Thus, a simple trip with a
disjoint loop component also corresponds to a satisfying assignment of our encoding.
It is worth noting that a non-simple trip, with loops or detours, will not correspond
to a satisfying assignment as H5 will be violated. As a sidenote, while the relaxed
encoding handles undirected graphs, it could potentially be possible to extend
the encoding using more variables to support directed graphs or enforce direction
adherence as an additional refinement step.

4.3.2 Learning Parameters from Data

We introduce algorithm 4.3, ProbLearn, for updating branch counters of PROB Â

from assignments. In order to learn branch parameters ◊Hi(n) and ◊Lo(n) of decision
node n, we require a counter for each of its branches, Hi#(n) and Lo#(n) respectively.
In the learning process, we have a dataset of assignments for Boolean variables in
the Boolean formula represented by PROB Â. For each assignment · in the dataset,
we perform a top-down traversal of Â following Algorithm 4.3. In the traversal, we
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Algorithm 4.3: ProbLearn - updates counters of Â from data
Input: PROB Â, · - complete assignment of data instance

1: n Ω rootNode(Â);
2: if n is ·-node then
3: for c in Child(n) do
4: ProbLearn(c, ·);
5: if n is decision node then
6: l Ω getLiteral(·, Var(n));
7: if l is positive literal then
8: Hi#(n) += 1;
9: ProbLearn(Hi(n), ·);

10: else
11: Lo#(n) += 1;
12: ProbLearn(Lo(n), ·);

visit all child branches of conjunction nodes (line 4) and the child branch of decision
node n corresponding to the assignment of Var(n) in · (lines 6 to 12), and increment
the corresponding counters in the process. Subsequently, the branch parameters for
node n are updated according to the following formulas.

◊Hi(n) = Hi#(n) + 1
Hi#(n) + Lo#(n) + 2 ◊Lo(n) = Lo#(n) + 1

Hi#(n) + Lo#(n) + 2
While we add 1 to numerator and 2 to denominator as a form of Laplace smooth-

ing [MRS08], other forms of smoothing to account for division by zero is possible.
Notice that the learnt branch parameters of node n are in fact approximations of
conditional probabilities according to Proposition 3 and Remark 3 as follows.

Proposition 3. Let n1 and n2 be decision nodes where n1 = Parent(n2) and
Lo(n1) = n2, ◊Lo(n2) = Lo#(n2)+1

Lo#(n1)+2 and ◊Hi(n2) = Hi#(n2)+1
Lo#(n1)+2 .

Proof. Recall that the Lo branch parameter of n2 is:

◊Lo(n2) = Lo#(n2) + 1
Hi#(n2) + Lo#(n2) + 2

Notice that Hi#(n2) + Lo#(n2) = Lo#(n1) as all top-down traversals of Â that
pass through n2 will have to pass through the Lo branch of n1.
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◊Lo(n2) = Lo#(n2) + 1
Lo#(n1) + 2

A similar argument can be made for ◊Hi(n2) by symmetry. In the general case if n2
has more than one parent, then the term Hi#(n2) + Lo#(n2) is the sum of counts
of branch traversals of all parent nodes of n2 that leads to n2. Additionally, any
conjunction node c between n1 and n2 will not a�ect the proof because all children
of c will be traversed. For understanding, one can refer to the example in Figure 4.2
where n1 corresponds to the root node.

Remark 3. Recall that Var(n1) = x and Var(n2) = y in PROB Â1 in Figure 4.2. Ob-
serve that Lo#(n2)

Lo#(n1) for PROB Â1 in Figure 4.2 is the conditional probability Pr(¬y|¬x)
as it represents the count of traversals that passed through Lo branch of n2 out of
total count of traversals that passed through Lo branch of n1. A similar observation
can be made for Hi(n2).

Notice that as the Lo#(n2) and Lo#(n1) becomes significantly large, that is
Lo#(n2) >> 1 and Lo#(n1) >> 2:

◊Lo(n2) = Lo#(n2) + 1
Lo#(n1) + 2 ¥

Lo#(n2)
Lo#(n1) = Pr(¬y|¬x)

As such, the learnt branch parameters are approximate conditional probabilities.

An important property to enable a PROB to learn the correct distribution is
smoothness. A non-smooth PROB could be missing certain parameters. An example
would be if we have an assignment ·1 = [¬x, y, ≠z], Â1 in Figure 4.2 will not
have a counter for ¬z as the traversal ends after reaching the true node from the
decision node representing variable y. Observe that the above-mentioned issue would
not occur in a smooth PROB Â2 in Figure 4.4. It is worth noting that non-zero
branch parameters ensure that satisfying assignments not in the parameter learning
dataset are sampled with non-zero probability. Additionally, the shared sub-diagram
structure of PROB and compositional nature of the sampling process, which we detail
in the subsequent section, allow for longer trips to be sampled with higher probability
if overlapping trips or sub-trips appeared frequently in parameter learning data.
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Figure 4.4: A smooth PROB Â2 with 9 nodes, n1, ..., n9, representing F = (x ‚ y) ·

(¬x ‚ ¬z). Branch parameters are omitted

4.3.3 Sampling Trip Query Answers

The ability to conditionally sample trips is critical to handling trip queries for
arbitrary start-end vertices, for which a trip is to be sampled conditioned on the
given start and end vertices. In this work, we adapted the weighted sampling
algorithm using PROB, which was introduced by prior work [YLM22], to support
conditional sampling and denote it as ProbSample.

Algorithm 4.4, ProbSample, performs sampling of satisfying assignments from a
PROB Â in a bottom-up manner. ProbSample takes an input PROB Â and partial
assignment ·

Õ and returns a sampled complete assignment that agrees with ·
Õ. The

input ·
Õ specifies the terminal vertices for a given trip query by assigning the s-type

variables. ProbSample employs two caches ’ and “, for partially sampled assignment
at each node and joint probabilities during the sampling process. In the process,
ProbSample performs calculations of joint probabilities at each node. In addition,
ProbSample stores the partial samples at each node in ’. The partial sample for a
false node would be Invalid as it means that an assignment is unsatisfiable. On the
other hand, the partial sample for a true node is ÿ which will be incremented with
variable assignments during the processing of internal nodes of Â. The partially
sampled assignment at every ·-node c is the union of the samples of all its child
nodes, as the child nodes have mutually disjoint variable sets due to decomposability
property. For a decision node d, if Var(d) is in ·

Õ, the partial sample at d will be
the union of the literal in ·

Õ and the partial sample at the corresponding child node
(lines 11 to 19) to condition on ·

Õ. Otherwise, the partial assignment at d is sampled
according to the weighted joint probabilities l and h (lines 21 to 28). Finally, the
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Algorithm 4.4: ProbSample - returns sampled assignment
Input: PROB Â, partial assignment ·

Õ

Output: complete assignment that agrees with ·
Õ

1: caches ’, “ Ω≠ initCache();
2: for node n in bottom-up ordering of Â do
3: if n is €-node then
4: ’[n] Ω≠ ÿ, “[n] Ω≠ 1;
5: else if n is ‹-node then
6: ’[n] Ω≠ Invalid, “[n] Ω≠ 0;
7: else if n is ·-node then
8: ’[n] Ω≠ unionChild(Child(n), ’);
9: “[n] Ω≠

r
cœChild(n) “[c];

10: else
11: if Var(n) in ·

Õ then
12: if ’[· Õ[Var(n)]] is Invalid then
13: ’[n] Ω≠ Invalid, “[n] Ω≠ 0;
14: else
15: ’[n] Ω≠ followAssign(·);
16: if ·

Õ[Var(n)] is ¬Var(n) then
17: “[n] Ω≠ ◊Lo(n) ◊ “[Lo(n)];
18: else
19: “[n] Ω≠ ◊Hi(n) ◊ “[Hi(n)];
20: else
21: l Ω≠ ◊Lo(n) ◊ “[Lo(n)];
22: h Ω≠ ◊Hi(n) ◊ “[Hi(n)];
23: “[n] Ω≠ l + h;
24: – Ω≠ Binomial( h

l+h);
25: if – is 1 then
26: ’[n] Ω≠ ’[Hi(n)] fi Var(n);
27: else
28: ’[n] Ω≠ ’[Lo(n)] fi ¬Var(n);
29: return ’[rootnode(Â)]

output of ProbSample would be the sampled assignment at the root node of Â. To
extend ProbSample to sample k complete assignments, one has to keep k partial
assignments in ’ at each node during the sampling process and sample k independent
partial assignments at each decision node.

Proposition 4. Let PROB Â represent Boolean formula F , ProbSample samples
· œ Sol(F ) according to the joint branch parameters, that is r

nœRepÂ(·)[(1≠In)◊Lo(n)+
In◊Hi(n)] where In is 1 if Hi(n) œ RepÂ(·) and 0 otherwise.
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Proof. Let Â be a PROB that only consists of decision nodes as internal nodes.
At each decision node d in the bottom-up sampling pass, assignment of Var(d) is
sampled proportional to ◊Lo(d) ◊ “[Lo(d)] and ◊Hi(d) ◊ “[Hi(d)] to be false and true
respectively. Without loss of generality, we focus on the term ◊Lo(d) ◊ “[Lo(d)], a
similar argument would follow for the other branch by symmetry.

Let d2 denote Lo(d). Notice that “[d2] is ◊Lo(d2)◊“[Lo(d2)]+◊Hi(d2)◊“[Hi(d2)].
Expanding the equation, the probability of sampling ¬Var(d) is ◊Lo(d) ◊ ◊Lo(d2) ◊

“[Lo(d2)] + ◊Lo(d) ◊ ◊Hi(d2) ◊ “[Hi(d2)]. If we expand “[Lo(d)] recursively, we are
considering all possible satisfying assignments of VarSet(Lo(d)), more specifically we
would be taking the sum of the product of corresponding branch parameters of each
possible satisfying assignment of VarSet(Lo(d)).

Observe that Var(d) is sampled to be assigned false with probability ◊Lo(d) ◊

◊Lo(d2) ◊ “[Lo(d2)] + ◊Lo(d) ◊ ◊Hi(d2) ◊ “[Hi(d2)]. Similarly, Var(d2) is sampled to
be assigned false with probability ◊Lo(d2) ◊ “[Lo(d2)]. Notice that if we view the
bottom-up process in reverse, the probability of sampling ¬Var(d) and ¬Var(d2) is
◊Lo(d) ◊ ◊Lo(d2) ◊ “[Lo(d2)]. In the general case, it then follows that a satisfying
assignment would reach the true node which has “ value set to 1. It then follows that
for each · œ Sol(F ), · is sampled with probability P = r

nœRepÂ(·)[(1 ≠ In)◊Lo(n) +
In◊Hi(n)]. Notice that ·-nodes have no impact on the sampling probability as no
additional terms are introduced in the product of branch parameters.

Remark 4. Recall in Remark 3 that ◊Hi(n) and ◊Lo(n) are approximately conditional
probabilities. By Proposition 4, assignment · œ Sol(F ) is sampled with probability
proportional to r

nœRepÂ(·)[(1 ≠ In)◊Lo(n) + In◊Hi(n)]. Notice that if we rewrite the
product of branch parameters as the product of approximate conditional probability,
it is approximately the joint probability of sampling · .

Refinement In the refinement step, we extract a trip from sampled assignment ·

by removing spurious disjoint loop components using depth-first search.

Definition 2. Let M
Õ : Sol(F ) ‘æ SimpleTrip(G) be the mapping function of the

refinement process, for a given graph G and its relaxed encoding F . For an assignment
· œ Sol(F ), let V· be the set of vertices in G that have their n-type variables set to
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true in · . A depth-first search is performed from the starting vertex on V· , removing
disjoint components. The resultant simple path is fi = M

Õ(G).

Although M
Õ(·) is a many-to-one (i.e. surjective) mapping function, it is not a

concern in practice as trips with disjoint loop components are unlikely to occur in
real-world or synthetic trip data from which probabilities can be learned.

Theorem 1. Given vs, vt œ G, let fis,t œ SimpleTrip(G) be a trip between vs and vt.
Let Rfis,t = {· | (· œ Sol(F )) · (MÕ(·) = fis,t)}. Then,

Pr[fis,t is sampled] Ã
ÿ

·œRfis,t

Ÿ

nœRepÂ(·)
[(1 ≠ In)◊Lo(n) + In◊Hi(n)]

Proof. From Definition 1 and 2, one can say that given a graph G and its relaxed
encoding F , ’fi œ SimpleTrip(G), ÷· œ Sol(F ) such that M

Õ(·) = fi.
Notice that sampling fis,t amounts to sampling · œ Rfis,t . As such, the probability

of sampling fis,t would be the sum over probability of sampling each member of
Rfis,t . Recall that the probability of sampling a single assignment · is proportional
to r

nœRepÂ(·)[(1 ≠ In)◊Lo(n) + In◊Hi(n)] by Proposition 4. As such the probability
Pr[fis,t is sampled] is proportional to q

·œRfis,t

r
nœRepÂ(·)[(1 ≠ In)◊Lo(n) + In◊Hi(n)].

Remark 5. It is worth noting that Pr[fis,t is sampled] > 0, as all branch parameters
are greater than 0 by definition. Recall that branch parameters are computed with a
’+1’ in numerator and ’+2’ in denominator, and given that branch counters are 0
or larger, branch parameters are strictly positive.

We also introduce an algorithm ComputeProb to compute probability of an
assignment · . ComputeProb is similar to ProbSample, less the sampling aspect.
ComputeProb is the joint probability computation component of ProbSample. In
line 11, the “ cache value is the product of branch parameter and child “ cache value
of the corresponding assignment of Var(n) instead of both possible assignments in
line 13.
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Algorithm 4.5: ComputeProb - returns probability of ·

Input: PROB Â, Assignment ·

Output: probability of ·

Input: PROB Â, Assignment ·

Output: probability of ·

1: cache “ Ω≠ initCache();
2: for node n in bottom-up pass of Â do
3: if n is €-node then
4: “[n] Ω≠ 1;
5: else if n is ‹-node then
6: “[n] Ω≠ 0;
7: else if n is ·-node then
8: “[n] Ω≠

r
cœChild(n) “[c];

9: else
10: if Var(n) in · then
11: “[n] Ω≠ assignProb(◊Hi(n), ◊Lo(n), “);
12: else
13: “[n] Ω≠ ◊Lo(n) ◊ “[Lo(n)] + ◊Hi(n) ◊ “[Hi(n)];
14: return “[rootnode(Â)]

4.4 Experiments
In order to evaluate the e�cacy of ProbRoute, we built a prototype in Python 3.8

with NumPy [Har+20], toposort [Smi22], OSMnx[Boe17], and NetworkX [HSS08]
packages. We employ KCBox tool[LMY25]1 for OBDD[·] compilation [LLY17]. The
experiments were conducted on a cluster of machines with Intel Xeon Platinum
8272CL processors and 64GB of memory. In the experiments, we evaluated ProbRoute
against an adaptation of the state-of-the-art probabilistic routing approach [CSD17]
and an o�-the-shelf non-probabilistic routing library, Pyroutelib3 [WK17], in terms
of quality of trip suggestions and runtime performance. In particular, we adapted
the state-of-the-art approach by Choi et al [CSD17] to sample for trips instead of
computing the most probable trip and refer to the adapted approach as ‘CSD’ in
the rest of the section. In addition, we compared our relaxed encoding to existing
path encodings across various graphs, specifically to absolute encoding and compact
encoding [Pre03].

Through the experiments, we investigate the following:
1
https://github.com/meelgroup/KCBox
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R1 Can ProbRoute e�ectively learn from data and sample quality trips?

R2 How e�cient is our relaxed encoding technique?

R3 What is the runtime performance of the ProbRoute?

Data Generation In this study, we use the real-world road network of Singapore
obtained from OpenStreetMap [Ope17] using OSMnx. The road network graph Gr

consisted of 23522 vertices and 45146 edges along with their lengths. In addition, we
also use an abstracted graph in the form of geohash level 5 partitions2 of Gr which
we denote as Ga for the remaining of this section. A vertex in Ga corresponds to a
unique subgraph, in this case a geohash level 5 region, of Gr.

Synthetic trips were generated by deviating from shortest path given start and
end vertices. A random pair of start and end vertices were selected in Gr and the
shortest path fi was found. Next, the corresponding intermediate regions of fi in
Ga are blocked in Gr, and a new shortest path fi

Õ was found and deemed to be the
synthetic trip generated. We generated synthetic trips for 11000 random pairs of
start and end vertices, 10000 trips for training and 1000 trips for evaluation. While
we used Ga to keep the trip sampling time reasonable, it is possible to use more fine-
grained regions for o�ine applications. In addition, we do not prevent the generation
of overlapping or intersecting trips i.e. the trips might not be disjoint. Thus, the
probability of longer trips are allowed to be influenced by smaller overlapping trips.

4.4.1 R1: ProbRoute’s Ability to Learn Probabilities

To understand ProbRoute’s ability to learn probabilities from data, we evaluate
its ability to produce trips that closely resembles the ground truth. Both ProbRoute
and CSD, which are sampling-based approaches, were evaluated on the 1000 start-
destination instances. For each start-destination instance, the respective approaches
are tasked to each sample 20 trips and we evaluate on the median match rate for
the 20 trips. Recall that the Á-match rate is defined as the proportion of vertices
in the ground truth trip that were within Á meters of euclidean distance from the
closest vertex in the proposed trip. In the evaluation, we set the Á tolerance to be

2
For more information on the format https://en.wikipedia.org/wiki/Geohash
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the median edge length of Gr, which is 64.359 meters, to account for parallel trips.
To further emphasize the advantages of probabilistic approaches, we included an
o�-the-shelf routing library, Pyroutelib3 [WK17], in the comparison. Pyroutelib3
is a routing library which loads OpenStreetMap data, and finds routes given start
and destination vertex coordinates, in the process respecting rules such as one-way
paths and turn restriction attributes. Additionally, Pyroutelib3’s routing algorithm
is not probabilistic i.e. it does not take historical trip data into consideration.

In order to conduct a fair comparison, we have adapted the CSD approach
to utilize PROB derived from our relaxed encoding. Our evaluation utilizes this
adapted approach to sample a trip on Ga in a stepwise manner, where the prob-
ability of the next step is conditioned on the previous step and destination. The
conditional probabilities are computed in a similar manner to the computations of
joint probabilities, which are the “ cache values, in the ProbSample. The predicted
trip on the road network Gr is determined by the shortest trip on the subgraph
formed by the sequence of sampled regions. In contrast, ProbRoute samples a trip
on Ga in a single pass, and subsequently retrieves the shortest trip on the subgraph
of the sampled regions as the predicted trip on Gr. It is worth noting that for
sampling-based approaches, there may be instances where a trip cannot be found on
Gr due to factors such as a region in Ga containing disconnected components. We
incorporated a rejection sampling process with a maximum of 400 attempts and 5
minutes to account for such scenarios.

Stats Exact Match Á-Match

Pyroutelib CSD ProbRoute Pyroutelib CSD ProbRoute
25% 0.045 0.049 0.082 0.061 0.066 0.102
50% 0.088 0.160 0.310 0.107 0.172 0.316
75% 0.185 0.660 1.000 0.208 0.663 1.000
Mean 0.151 0.359 0.445 0.171 0.372 0.456

Table 4.1: Match rate statistics for completed benchmark instances by respective
methods. The percentages under ‘Stats’ column refer to the corresponding percentiles.
‘Exact Match’ refers to match rate when Á = 0, and ‘Á-Match’ refers to match rate
when Á is set to median edge length of Gr.

Table 4.1 shows the match rate statistics of the respective methods. Under
Á-Match setting, where Á is set as the median edge length of Gr to account for
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parallel trips, ProbRoute has the highest match rate among the three approaches.
In addition, ProbRoute produced perfect matches for more than 25% of instances.
ProbRoute has 0.316 Á-match rate on median, significantly more than 0.172 for
CSD and 0.107 for Pyroutelib. The trend is similar for exact matches, where Á

is set to 0 as shown under the ‘Exact Match’ columns in Table 4.1. In the exact
match setting, ProbRoute achieved a median of 0.310 match rate, almost double
that of CSD’s 0.160 median match rate. The evaluation results also demonstrate
the usefulness of probabilistic approaches such as ProbRoute, especially in scenarios
where experienced drivers navigate according to their own heuristics which may be
independent of the shortest trip. In particular, ProbRoute would be able to learn
and suggest trips that align with the unknown heuristics of driver preferences given
start and destination locations. Thus, the results provide an a�rmative answer to
R1.

We show in Table 4.2 additional Á-match rate statistics on how well ProbRoute
performs when provided di�erent amount of data to learn probabilities. As we
increase the amount of data provided for learning, in increments of 2000 instances
(20% of 10000 total), there is a general improvement in the match rate of the trips
produced by ProbRoute. A similar trend is observed when Á = 0, with corresponding
stats shown in Table 4.3.

Stats ProbRoute
0% 20% 40% 60% 80% 100%

Mean 0.210 0.416 0.434 0.451 0.466 0.456

Std 0.192 0.360 0.373 0.376 0.383 0.386

25% 0.081 0.102 0.095 0.098 0.098 0.102

50% 0.149 0.286 0.297 0.318 0.349 0.316

75% 0.257 0.715 0.854 0.964 1.000 1.000

Table 4.2: Á-match rate statistics for ProbRoute where Á is set as median edge
length of road network graph Gr. The percentages under ‘Stats’ column refer to the
percentiles, for example ‘25%’ row refer to the 25th percentile match rate for various
methods. The percentages under ProbRoute header indicates the percentage of data
that ProbRoute has learned from, out of the 10000 learning instances in total.
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Stats ProbRoute
0% 20% 40% 60% 80% 100%

Mean 0.192 0.404 0.422 0.440 0.455 0.445

Std 0.192 0.365 0.379 0.382 0.389 0.391

25% 0.063 0.080 0.075 0.078 0.077 0.082

50% 0.132 0.275 0.282 0.308 0.334 0.305

75% 0.243 0.702 0.848 0.963 1.000 1.000

Table 4.3: Exact match rate statistics for ProbRoute where Á = 0. The percentages
under ‘Stats’ column refer to the percentiles, for example ‘25%’ row refer to the
25th percentile match rate for various methods. The percentages under ProbRoute
header indicates the percentage of data that ProbRoute has learned from, out of the
10000 learning instances in total.

Encoding Grid SGP

2 3 4 5

Absolute 99 1500 31768 1824769 TO

Compact 771 TO TO TO TO

Relaxed(Ours) 31 146 2368 20030 38318

Table 4.4: Comparison of OBDD[·] size for di�erent graphs, with 3600s timeout.
Grid 2 refers to a 2x2 grid graph. SGP refers to abstract graph (Ga) of Singapore
road network.

4.4.2 R2: E�ciency of Relaxed Encoding

We compared our relaxed encoding to existing path encodings across various
graphs, specifically to absolute encoding and compact encoding [Pre03]. In the
experiment, we had to adapt compact encoding to CNF form with Tseitin transfor-
mation [Tse83], as CNF is the standard input for compilation tools. We compiled
the CNFs of the encodings into OBDD[·] form with 3600s compilation timeout
and compared the size of resultant diagrams. The results are shown in Table 4.4,
with rows corresponding to the di�erent encodings used and columns corresponding
to di�erent graphs being encoded. Entries with TO indicate that the compilation
has timed out. Table 4.4 shows that our relaxed encoding consistently results in
smaller decision diagrams, up to 91◊ smaller. It is also worth noting that relaxed
encoding is the only encoding that leads to compilation times under 3600s for the
abstracted Singapore graph. The results strongly support our claims about the
significant improvements that our relaxed encoding brings.
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4.4.3 R3: ProbRoute’s Runtime Performance

Stats
CSD

Pyroutelib ◊ 10
3 ProbRoute

Pyroutelib ◊ 10
3

25% 6.33 1.40
50% 21.64 2.00
75% 47.90 3.03
Mean 36.16 2.62

Table 4.5: Relative runtime statistics (lower is better) for completed instances by
CSD and ProbRoute. Under column ‘ CSD

Pyroutelib ’ and row ‘50%’, CSD approach takes
a median of 21.64 ◊ 103 times the runtime of Pyroutelib.

For wide adoption of new routing approaches, it is crucial to be able to handle
the runtime demands of existing applications. As such, we measured the relative
runtimes of probabilistic approaches, that is ProbRoute and CSD, with respect to
existing routing system Pyroutelib and show the relative runtimes in Table 4.5. From
the result, ProbRoute is more than one order of magnitude faster on median than the
existing probabilistic approach CSD. The result also shows that ProbRoute is also on
median more than a magnitude closer to Pyroutelib’s runtime using the same PROB
as compared to CSD approach. In addition, CSD approach timed out on 650 of the
1000 test instances, while ProbRoute did not time out. Additionally, as mentioned
in [CSD17], CSD does not guarantee being able to produce a complete trip from start
to destination. The results in Table 4.5 highlight the progress made by ProbRoute
in closing the gap between probabilistic routing approaches and existing routing
systems.

4.5 Summary
In this chapter, we focused on addressing the scalability barrier for reasoning over

route distributions as the application, demonstrating the aspect of recoverable relax-
ations of our framework. In particular, we contribute two techniques: a relaxation
and refinement approach that allows us to e�ciently and compactly compile routes
corresponding to real-world road networks, and a one-pass route sampling technique
adapted from INC in Chapter 3. We demonstrated the e�ectiveness of our approach
on a real-world road network and observed around 91◊ smaller PROB, 10◊ faster
trip sampling runtime, and almost 2◊ the match rate of state-of-the-art probabilistic
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approach, bringing probabilistic approaches closer to achieving comparable runtime
to traditional routing tools.
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Chapter 5

Alternative Logic Forms for Knowl-
edge Compilation Applications

5.1 Motivation
In this chapter, we highlight our framework pillar on alternative logic forms

for knowledge compilation applications. In particular, we demonstrate the idea
of considering alternative logic forms for knowledge compilation via the classic
application of model counting. The core idea is that certain problems and constraints
are more suitable for logic forms other than the typically used propositional boolean
formula in conjunctive normal form. Considering a more suitable logic form could
increase the e�cacy of knowledge compilation techniques in the particular application,
in this case, model counting.

Propositional model counting involves computing the number of satisfying as-
signments to a Boolean formula. Model counting is closely related to the Boolean
satisfiability problem where the task is to determine if there exists an assignment
of variables such that the Boolean formula evaluates to true. Boolean satisfiability
and model counting have been extensively studied in the past decades and are
the cornerstone of an extensive range of real-life applications such as software de-
sign, explainable machine learning, planning, and probabilistic reasoning [BDP03;
Nar+19; Jac19; FMM20]. Owing to decades of research, there are numerous tools
and techniques developed for various aspects of Boolean satisfiability and model
counting, from Boolean formula preprocessors to SAT solvers and model counters.

The dominant representation format of Boolean formulas is Conjunctive Normal
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Form (CNF), and accordingly, the tools in the early days focused on CNF as the
input format. Over the past decade and a half, there has been considerable e�ort in
exploring other representation formats: one such format that has gained significant
interest from the community is Pseudo-Boolean (PB) formulas, which are expressed
as the conjunction of linear inequalities. PB formulas are shown to be more succinct
than CNF formulas and natural for problems such as Knapsack, sensor placement,
binarized neural networks, and the like. Furthermore, PB formulas are able to
express constraints more succinctly compared to Boolean formulas in CNF [Le +18].
As an example, a single PB constraint is su�cient to express at-most-k and at-
least-k types of cardinal constraints whereas the equivalent in CNF would require a
polynomial number of clauses [Sin05]. On a higher level, an arbitrary CNF clause can
be expressed with a single PB constraint but the converse is not true [Le +18]. The
past decade has witnessed the development of satisfiability solving techniques based
on the underlying proof systems naturally suited to PB constraints, and accordingly,
the state-of-the-art PB solvers, such as RoundingSat significantly outperform CNF
solvers on problems that are naturally encoded in PB [EN18; Dev20; Dev+21].

In contrast to satisfiability, almost all the work in the context of model counting
has focused on the representation of Boolean formulas in Conjunctive Normal Form
(CNF), with the sole exception of the development of an approximate model counter
for PB formulas [YM21].

This chapter explores knowledge compilation diagrams for alternative logic forms,
in particular for PB formulas, by introducing a native scalable exact model counter
PBCount and its extended variant PBCount2. PBCount is based on the knowledge
compilation paradigm, and in particular, compiles a given PB formula into algebraic
decision diagrams (ADDs) [Bah+93], which allows us to perform model counting for
PB formulas natively. Furthermore, we extend PBCount with projected PB model
counting and incremental model counting capabilities and term the extended version
PBCount2. PBCount is a bottom-up PB counter, in that the computation process
of model count builds up the count from small component ADDs that represent
individual constraints of the PB formula. In the name of completeness, this chapter
also explores the top-down model counter design in the context of PB model counting,
by introducing an exact PB counter PBMC. PBMC uses a top-down search-based
approach along with techniques similar to conflict-driven clause learning (CDCL),
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adapted for PB formulas, to perform model counting. In particular, PBMC builds
on top of methodologies adapted from RoundingSat PB solver [EN18], GPMC CNF
model counter [RS17], and PBCount PB counter [YM24]. In addition, PBMC is
related to knowledge compilation as the implicit search tree of its computation
process can be framed as a top-down compilation process for decision-dnnf or even
ddnnf knowledge compilation form, similar to top-down knowledge compilers such
as D4.

We perform extensive empirical evaluations on benchmark instances arising
from di�erent applications, such as sensor placement, multi-dimension knapsack,
and combinatorial auction benchmarks [GL80; BN07; LSM23]. Our evaluations
highlighted the e�cacy of PBCount and PBCount2 against existing state-of-the-art
CNF model counters. Firstly, we replace the ADD compilation mechanism of existing
work [DPV20a] to natively handle PB constraints, resulting in PBCount. PBCount
is able to successfully count 1513 instances while the prior state of the art could only
count 1013 instances, thereby demonstrating significant runtime improvements. It
is worth remarking that PBCount achieves superior performance with substantially
weaker preprocessing techniques in comparison to techniques employed in CNF
model counters, making a strong case for the advantages of considering alternative
logic formats for knowledge compilation applications.

Subsequently with PBCount2, we introduce the Least Occurrence Weighted Min
Degree computation order heuristic (LOW-MD in short) to support projected PB
model counting, and caching mechanism to support incremental model counting.
In our evaluations, PBCount2 is able to successfully count 1957 projected model
counting instances while the state-of-the-art CNF-based projected model counter
could only count 1398 instances. Our evaluations also showed that PBCount2 is able
to complete 1618 instances for incremental benchmarks involving 5 counts with 1
count for the initial PB formula and 4 counts for modification steps, whereas state-
of-the-art CNF model counters completed less than 1000 incremental benchmarks.

The prototype implementations of PBCount and PBCount2 demonstrate the
usefulness of considering alternative forms to encode problems when pursuing
knowledge compilation-based applications, as opposed to the convention of always
using CNF formulas. The evaluations show that potentially huge performance
improvements can be gained by switching to more suitable logic forms for certain

57



Chapter 5. Alternative Logic Forms for Knowledge Compilation Applications

problems.

5.2 Preliminaries

Algebraic Decision Diagram As introduced in Chapter 2, an algebraic decision
diagram (ADD) is a directed acyclic graph representation of a function f : 2Var(f)

æ S

where Var(f) is the set of Boolean variables that f is defined over, and S is an
arbitrary set known as the carrier set. In the computations involving ADDs in this
chapter, we make use of the Apply and ITE operations on ADDs [Bry86; Bah+93].
The Apply operation takes as input a binary operator ÛÙ, two ADDs Â1, Â2, and
outputs an ADD Â3 such that the Func(Â3) = Func(Â1) ÛÙ Func(Â2). We use the
term merge to refer to the usage of Apply with ◊ operator on two ADDs. Referring
to the explanation of Apply, we say Â3 represents PB constraints {c1, c2} if Â1

represents {c1} and Â2 represents {c2}. The ITE operation (if-then-else) involves 3
ADDs Â1, Â2, Â3, where carrier set of Â1 is restricted to {0, 1}. ITE outputs an ADD
that is equivalent to having 1 valued leaf nodes in Â1 replaced with Â2 and 0 valued
leaf nodes with Â3.

5.2.1 Model Counting with ADDs

In this work, we adapt the existing dynamic programming counting algorithm of
ADDMC [DPV20a], shown in Algorithm 5.6, as the building block of PBCount to
perform PB model counting with ADDs. This includes using the default ADDMC
configurations for ADD variable ordering (MCS) and cluster ordering fl (BOU-
QUET_TREE). The ADDMC approach involves partitioning the input formula into
clusters, which can be viewed as subtasks in the dynamic programming paradigm.
The algorithm takes in a list Ï of ADDs, representing all constraints, and a cluster
ordering fl which specifies the order to process the ADDs. ADD Â is initialized
with value 1. According to cluster ordering fl, cluster ADDs Âj are formed using
the Apply operation with ◊ operator on each of the individual constraint ADDs of
constraints in the cluster. The cluster ADD Âj is combined with Â using the same
Apply operation. If variable x does not appear in later clusters in fl, it is projected
out from Â (early projection process in ADDMC) using Â Ω Â[x ‘æ 0] + Â[x ‘æ 1]
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in line 8. Once all clusters have been processed, the unprocessed variables x of the
formula F are projected out using the same operation as before (line 10). After all
variables are projected out, Â is a constant ADD that represents the final count.

Algorithm 5.6: computeCount(Ï, fl)
Input: Ï - list of ADD, fl - cluster merge ordering
Output: model count

1: Â Ω constantADD(1);
2: for cluster Aj œ fl do
3: Âj Ω constantADD(1);
4: for constraint Ci œ Aj do
5: Âj Ω Âj ◊ Ï[Ci];
6: Â Ω Â ◊ Âj;
7: foreach x œ Â where x not in later clusters in fl do
8: Â Ω Â[x ‘æ 0] + Â[x ‘æ 1];
9: forall unprocessed variable x do

10: Â Ω Â[x ‘æ 0] + Â[x ‘æ 1];
11: return getValue(Â)

Projected Model Counting Let F be a formula and Var(F ) be the set of
variables of F . Let X and Y be disjoint subsets of Var(F ) such that X fl Y = ÿ and
X fi Y = Var(F ). (F, X, Y ) is a projected model counting instance. As previously
introduced in Chapter 2, the projected model count of F on X is the number of
assignments of all variables in X such that there exists an assignment of variables
in Y that makes F evaluate to true [Azi+15]. Non-projected model count is a
special case of projected model counting where all variables are in the projection
set, i.e. X = Var(F ), and Y = ÿ. More formally, the projected model count is
q

—œ2X (max–œ2Y [F ](– fi —)) [DPV21]. Where [F ](– fi —) is the evaluation of F with
the variable assignment – fi —, and returns 1 if F is satisfied and 0 otherwise. With
reference to Figure 5.1, suppose the PB formula has only the single PB constraint
3x1 + 4x2 Ø 3, then the 3 satisfying assignments are (x1, x2), (x1, x̄2), (x̄1, x2). If the
projection set is x1 then the corresponding projected model count is 2, because both
partial assignments involving x1 can be extended to a satisfying assignment.

Project-Join Tree Let F be a formula. A project-join tree [DPV20b] of F is a
tuple T = (T, r, “, fi) where T is a tree with nodes V(T ) and rooted at node r. “ is
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x1

x2

0 1
Figure 5.1: An ADD representing 3x1 + 4x2 Ø 3 with ordering x1, x2

a bijection from leaves L(T ) of T to constraints of F and fi is a labelling function
V(T ) \ L(T ) æ 2Var(F ) on internal nodes V(T ) \ L(T ) of T . Additionally, T satisfies
the following:

1. The set {fi(n) : n œ V(T ) \ L(T )} partitions Var(F )

2. For an arbitrary internal node n. Let x be a variable in fin, and c be a PB
constraint of F . If x œ Var(c), then leaf node “

≠1(c) is a descendant of n.

X,Y-Graded Project-Join Tree Let F be a formula with project join tree T ,
and variable sets X, Y being partitions of Var(F ). The project join tree T is an
X, Y graded project-join tree [DPV21] if there exist grades IX and IY such that:

1. The set {IX , IY } is a partition of internal nodes of T

2. If node nX œ IX , fi(nX) ™ X

3. If node nY œ IY , fi(nY ) ™ Y

4. If nX œ IX and nY œ IY , nX is not a descendant of nY in tree T rooted at r.

Projected Model Counting with Project Join Trees Over a series of
works [DPV20a; DPV20b; DPV21] Dudek, Phan, and Vardi established a CNF
model counting framework with project join trees and extended the framework to
projected CNF model counting by employing a specific type of project join tree,
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namely an X, Y -graded project join tree. Dudek, Phan, and Vardi showed that
performing ÷-projection at IY nodes and �-projection at IX according to T produces
the correct projected CNF model count [DPV21]. We show that our projected PB
model counting approach in PBCount2 shares similarities with the project join tree
framework in Section 5.4.2, providing the intuition for algorithm correctness.

Search-Based Model Counting Existing search-based model counters, typically
for CNF formulas, adopt similar search methodologies in solvers, which tend to
be the Conflict-Driven Clause Learning (CDCL) algorithm, to compute the model
count. Notable counters with the search-based component caching design include D4,
GPMC, Ganak, and SharpSAT-TD [LM17; RS17; Sha+19; KJ21] which demonstrated
superior performance as winners of recent model counting competitions. On a
high level, search-based counters iteratively assign values to variables until all
variables are assigned a value or a conflict is encountered. In the process, sub-
components are created by either branching on a variable or splitting a component
into smaller variable-disjoint components. The counters cache the components and
their respective counts to avoid duplicate computation. When all variables are
assigned, the counter reaches a satisfying assignment and will assign the current
component the count 1 and backtrack to account for other branches. When the
counter encounters a conflict i.e. the existing assigned variable already falsifies the
formula, it learns the reason for the conflict and prunes the search space such that
this sub-branch of the search will be avoided in the remaining computation process.
A leaf component in the implicit search tree either has counts 0 and 1 for conflict
and all variables assigned states respectively. The count of a component that has
variable-disjoint sub-components is the product of the counts of its sub-components.
The count of a component that branches on a variable is the sum of the counts from
the two branches. After accounting for all search branches, the counter returns the
final count of satisfying assignments.
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5.3 Preprocessing and Individual PB Constraint
ADDs

We show the overall flow of PBCount in Figure 5.2. We first preprocess the PB
formula using propagation and assumption probing. Subsequently, we compile each
of the PB constraints into an algebraic decision diagram (ADD). Next, we merge
constraint ADDs using Apply operation and perform model counting by projecting
out variables (Section 5.2.1). The model count would be the value after all variables
are projected out. Without loss of generality, the algorithms described in this chapter
handle PB constraints involving ‘=’ and ‘Ø’ operators, as ‘Æ’ type constraints can
be manipulated into ‘Ø’ type constraints.

Preprocess
(Section 5.3.1)

Compile into
individual ADD
(Section 5.3.2)

Count with ADDs
(Section 5.2.1)PB formula F Model Count

PBCount

Figure 5.2: Overall flow of our PB model counter PBCount. Shaded boxes indicate
our contributions in PBCount and non-shaded boxes indicate adaptations from prior
works.

5.3.1 Preprocessing

Propagate Assumption ProbingPB formula F PB formula F
Õ

Preprocessing

Figure 5.3: Preprocessing of PB formula

The preprocessing phase of PBCount performs assumption probing and unit prop-
agation [BJK21]. PBCount repeatedly performs unit propagation and assumption
probing until no change is detected, as shown in Algorithm 5.7.

Sign Manipulation Let C be the PB constraint ≠3x1 ≠ 4x2 Æ ≠3. One can
multiply both sides of the constraint by ≠1 to form 3x1 + 4x2 Ø 3. In addition, one
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Algorithm 5.7: Preprocess(F )
Input: F - PB formula
Output: F

Õ - preprocessed PB formula
1: mapping Ω [ ]; F

Õ
Ω F ;

2: repeat
3: forall single variable constraint C œ F

Õ do
4: mapping Ω mapping fi InferDecision(C);
5: F

Õ
Ω propagate(F Õ, mapping);

6: forall variable x œ F
Õ do

7: mapping Ω mapping fi AssumProbe(F Õ
, x);

8: F
Õ
Ω propagate(F Õ, mapping);

9: until F
Õ does not change;

10: return F
Õ

would be able to switch the sign of the coe�cient of x2 as follows.

3x1 + 4x2 Ø 3

3x1 + 4(1 ≠ x̄2) Ø 3

3x1 ≠ 4x̄2 Ø ≠1

In general, one is able to manipulate the sign of any term coe�cient as shown in the
example above. We use the above technique to optimize PB constraint compilation
approaches in Algorithms 5.13 and 5.14,which we discuss in later sections.

Propagation Propagation in the Pseudo-Boolean context refers to the simpli-
fication of the PB constraints if decisions on some PB variables can be inferred.
In particular, one might be able to infer decisions on PB variable xi from PB
constraint Cj when the constraint is of either 1) aixi Ø k or 2) aixi = k forms
using the InferDecision algorithm. We show the pseudocode of the InferDecision in
Algorithm 5.8.

Assumption Probing Assumption probing can be viewed as a weaker form of
failed literal probing [BJK21] as well as single step look ahead propagation process.
For an arbitrary variable xi œ F , where F is the PB formula, assumption probing
involves performing propagation and decision inference independently for when
xi = 0 and xi = 1. If another variable xj is inferred to have the same value
assignment · [xj] in both cases, then it can be inferred that xj should be set to · [xj]
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Algorithm 5.8: InferDecision(C)
Input: C - PB constraint with single term aili where li is a literal of

variable xi

Output: assignment mapping of xi if inferred
1: mapping Ω [];
2: if C is equality then
3: if ai = k and k ”= 0 then
4: mapping Ω mapLitTrue(C);
5: else if k = 0 then
6: mapping Ω mapLitFalse(C);
7: else
8: if (0 < k Æ ai and isPosLit(li)) or (ai Æ k < 0 and isNegLit(li)) then
9: mapping Ω mapLitTrue(C);

10: return mapping

Algorithm 5.9: AssumProbe(F , xi)
Input: F - PB formula, xi - assumption variable
Output: mapping of variable values

1: temp, mapping Ω [];
2: forall constraint C œ F [xi ‘æ 1] do
3: temp Ω temp fi InferDecision(C);
4: forall constraint C œ F [xi ‘æ 0] do
5: temp Ω temp fi InferDecision(C);
6: forall variable xj, where j ”= i do
7: if exactly one literal of xj in temp then
8: mapping Ω mapping fi temp[xj];
9: return mapping

in all satisfying assignments of F . Algorithm 5.9 illustrates the process for a single
variable xi, and in the preprocessing stage, we perform assumption probing on all
variables in F .

5.3.2 Pseudo-Boolean Constraint Compilation

In this work, we introduce two approaches, namely top-down and bottom-up,
to compile each constraint of a PB formula into an ADD. We use T, k, and eq in
place of PB constraint C when describing the compilation algorithms. T refers to
the term list, which is a list of aixi terms of C. k is the constraint constant and eq

indicates if C is ‘=’ constraint.
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x1

x2

0 1
Figure 5.4: An ADD Â1 representing 3x1 + 4x2 Ø 3

Bottom-up ADD Constraint Compilation In order to compile an ADD which
represents a PB constraint of the following form qn

i=1 aixi[Ø, =, Æ]k, we first start
compiling the expression qn

i=1 aixi from literal and constant ADDs as shown by
line 3 of Algorithm 5.10. A constant ADD which represents integer ai is a single
leaf node that has value ai. A literal ADD comprises of an internal node, which
represents variable x, and true and false leaf nodes, which represent the evaluated
values of the literal if x is set to true and false. With the literal and constant ADDs,
we use Apply with ◊ operator to form ADDs for each term aixi. We use Apply with
+ operator on term ADDs to form the ADD representing expression qn

i=1 aixi. As
an example, the ADD Â for the expression 3x1 + 4x2 is shown in Figure 2.1. To
account for the inequality or equality, we look at the value of leaf nodes in expression
ADD Â and determine if they satisfy the constraint (lines 4 to 10). We replace
the leaf nodes with 1 node if the constraint is satisfied and 0 node otherwise, the
resultant ADD is illustrated in Figure 5.4.

Top-down ADD Constraint Compilation In contrast to the bottom-up ADD
compilation approach, the top-down ADD compilation for a given PB constraint
involves the if-then-else (ITE) operation for decision diagrams. We only consider PB
constraints that involve = or Ø as mentioned previously. The top-down compilation
algorithm (Algorithm 5.11) makes use of recursive calls of Algorithm 5.12 to construct
an ADD that represents a given PB clause. In particular, Algorithms 5.11 and 5.12
work by iterating through the terms of the PB constraint using idx. The algorithms
build the sub-ADDs when the literal at position idx evaluates to true for the if-then
case and otherwise for the else case of the ITE operation while updating the constraint
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Algorithm 5.10: compileConstraintBottomUp(T, k, eq)
Input: T - term list, k - constraint value, eq - indicator if constraint is ‘=’
Output: Â - constraint ADD

1: Â Ω constantADD(0);
2: for term t in T do
3: Â += constantADD(t.coe�) ◊ literalADD(t.literal);
4: for node n in LeafNode(Â) do
5: if eq is true and n.value = k then
6: n.value Ω 1;
7: else if eq is false and n.value Ø k then
8: n.value Ω 1;
9: else

10: n.value Ω 0;
11: return Â

constant k (lines 2-3 of Algorithm 5.11 and lines 9-10 of Algorithm 5.12). Notice that
the top-down compilation approach allows for early termination when the current
k value is negative for Ø k case. However, early termination is possible only if all
unprocessed coe�cients are positive, implying that k in subsequent recursive calls
cannot increase. One way would be to sort the term list T in ascending order of term
coe�cients, processing terms with negative coe�cients before positive coe�cients.

Algorithm 5.11: compileConstraintTopDown(T, k, eq)
Assumption: T is in ascending order of term coe�cients or all coe�cients

are non-negative
Input: T - term list, k - constraint value, eq - indicator if constraint is ‘=’
Output: Â - constraint ADD

1: Â Ω literalADD(T [0].literal);
2: Âlo Ω compileTDRecur(T, k, eq, 1);
3: Âhi Ω compileTDRecur(T, k ≠ T [0].coe�, eq, 1);
4: Â.ITE(Âhi, Âlo);
5: return Â

Optimizations for Bottom-up Compilation In the bottom-up compilation
approach, an ADD is built from the individual literal and constant ADDs to represent
the expression, before subsequently having leaf node values converted to 1 and 0
depending on if the PB constraint is satisfied. In the process, an ADD could be
exponential in size with respect to the number of variables processed. In order to
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Algorithm 5.12: compileTDRecur(T, k, eq, idx)
Input: T - term list, k - current constraint value, eq-input constraint

equality, idx-index of current term in T

Output: Â - constraint ADD from idx to end of T

1: if T [idx].coe� Ø 0 then
2: isPos Ω true;
3: if eq and isPos and k < 0 then
4: constantADD(0);
5: else if !eq and isPos and k Æ 0 then
6: constantADD(1);
7: else if idx < T .length then
8: Â Ω literalADD(T [idx].literal);
9: Âlo Ω compileTDRecur(T, k, eq, idx + 1);

10: Âhi Ω compileTDRecur(T, k ≠ T [idx].coe�, eq, idx + 1);
11: return Â.ITE(Âhi, Âlo)
12: else
13: if eq and k = 0 then
14: return constantADD(1)
15: else
16: return constantADD(0)

minimize the intermediate ADD during the compilation process, we introduce an
optimization for bottom-up compilation. The key idea is to increase the number of
shared sub-components of the intermediate ADD, and this amounts to processing
the PB constraint terms in a manner that results in fewer distinct subset sums of
term coe�cients as every distinct subset sum requires a separate leaf node. To this
end, we optimize the compilation process by sorting the terms according to the
absolute values of their coe�cients in ascending order. Subsequently, we manipulate
the coe�cients, using x = (1 ≠ x̄), of the terms such that alternate terms have
coe�cients of di�erent signs. We show the pseudocode in Algorithm 5.13.

Algorithm 5.13: optimizeCompileBottomUp(T, k, eq)
Input: T - term list, k - constraint value, eq - input constraint equality
Output: Â - constraint ADD

1: T Ω sortAscendingAbsoluteCoe�(T );
2: T

Õ
, k

Õ
Ω makeEveryAltCoe�Pos(T, k) ; Û sign manipulation

3: return compileConstraintBottomUp(T Õ
, k

Õ
, eq)

67



Chapter 5. Alternative Logic Forms for Knowledge Compilation Applications

Optimizations for Top-down Compilation Similarly, we also introduce opti-
mizations for the top-down compilation approach. Recall that one would only be
able to perform early termination for PB constraints of the form q

aixi Ø k after
all negative coe�cient terms have been processed. To this end, we manipulate all
coe�cients to be positive and adjust k accordingly so that early termination is pos-
sible. Furthermore, we sort the terms in descending value of the term coe�cients as
larger coe�cients are more likely to satisfy the constraint. We show the pseudocode
in Algorithm 5.14.

Algorithm 5.14: optimizeCompileTopDown(T, k, eq)
Input: T - term list, k - constraint value, eq - input constraint equality
Output: Â - constraint ADD

1: T
Õ
, k

Õ
Ω makeAllCoe�Pos(T, k) ; Û sign manipulation

2: T
Õ
Ω sortDescendingCoe�(T );

3: return compileConstraintTopDown(T Õ
, k

Õ
, eq)

Algorithm 5.15: compileConstraintDynamic(T, k, eq)
Input: T - term list, k - constraint value, eq-input constraint equality
Output: Â - constraint ADD
Small k: T .length Æ 25 and k < 25th percentile of T .coe�
Uniq Coe�: k < 25th percentile of T .coe� and unique coe�cient rate Ø

0.9 and unique adjacent di�erence rate Ø 0.85
1: if Small k or Uniq Coe� then
2: bottomUp Ω false;
3: else
4: bottomUp Ω true;
5: if bottomUp then
6: return optimizeCompileBottomUp(T, k, eq)
7: else
8: return optimizeCompileTopDown(T, k, eq)

Dynamic Compilation A PB formula can include more than one PB constraint.
As we will show in a case study in the experiments section, the choice of compilation
approach has a substantial impact on overall runtime. To this end, we introduce a
dynamic heuristic (Algorithm 5.15) to select the appropriate compilation approach
and perform optimization of the compilation process as previously discussed. In
Algorithm 5.15, we choose top-down compilation if either Small k condition or Uniq
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Coe� is met. The two conditions are designed to be in favor of the botttom-up
compilation approach, we provide performance analysis in the experiments section.
The intuition for Small k condition is that top-down compilation might perform better
when the constraint is relatively short, and that k is small relative to the coe�cients
of the constraint i.e. the iterative assignment of variables in Algorithms 5.11 and 5.12
will be able to terminate earlier. The intuition for Uniq Coe� condition is to use
top-down compilation when bottom-up compilation might not be e�cient. More
specifically, bottom-up compilation might not be e�cient when the ADDs have a
lot of unique leaf nodes, indicating less shared sub-diagrams and potentially more
expensive Apply operations in practice.

5.3.3 Pseudo-Boolean Model Counting with ADDs

We detailed the building blocks of PBCount in the prior parts of this chapter,
and show the overall flow of PBCount in Figure 5.2. We also show the overall
PB model counting algorithm of PBCount in Algorithm 5.16. PBCount starts by
preprocessing the input PB formula F using the techniques introduced previously.
Next, as mentioned in Section 5.2.1, PBCount follows the existing cluster ordering
heuristics in ADDMC [DPV20a], (BOUQUET_TREE), which is based on Bouquet’s
method [Bou99]. The clusters, broadly speaking, are partitions of the constraints of F

and can be viewed as subtasks in the dynamic programming paradigm. The computed
cluster ordering can be viewed as a plan that determines how the constraint ADDs
are merged and when variables can be projected out. Finally, PBCount computes
the model counting using the ADD counting algorithm, Algorithm 5.6.

Algorithm 5.16: PBCount main algorithm
Input: F - PB formula
Output: Model Count of F

1: F Ω preprocess(F );
2: fl Ω getClusterOrdering(F ) ; Û Using bouquet tree heuristic
3: Ï Ω[ ];
4: for all constraints c of F do
5: T, k, eq Ω extract(c) ; Û term list, constraint value, equality indicator
6: Â Ω compileConstraintDynamic(T, k, eq);
7: Ï.insert(Â);
8: return computeCount(Ï, fl);
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5.4 Supporting Projected and Incremental Model
Counting

Preprocess &
compile into
individual

ADDs
(lines 1-3)

Merge ADDs &
÷-projection of
non-projection
set variables
(lines 4-8)

Merge ADDs
& �-projection
of projection
set variables
(lines 9-13)

PB formula F Model Count

Projected model counting flow for PBCount2

Figure 5.5: Overall flow of our projected model counter PBCount2. Shaded boxes
indicate our contributions and white box indicates techniques adapted from existing
works. Line numbers correspond to lines in Algorithm 5.17.

In this section, we detail our Least Occurrence Weighted Min Degree (LOW-MD)
computation ordering heuristic as well as the implementations of PBCount2 to
support a) projected model counting and b) incremental model counting.

5.4.1 Least Occurrence Weighted Min Degree

The general methodology of performing PB model counting tasks with ADDs
involves representing each constraint with its individual ADD and subsequently
merging the ADDs and projecting away variables to produce the final model count. As
implemented in existing work [YM24], the ordering of merging ADDs and projecting
away variables is determined by heuristics. However, the existing heuristics did
not support projected model counting. To this end, we introduce a new ordering
heuristic in PBCount2 in this work, which we term the Least Occurrence Weighted
Min Degree heuristic (LOW-MD in short).

Our Least Occurrence Weighted Min Degree heuristic is as follows. Let G be
an undirected bipartite graph, where the vertices either represent variables in PB
formula F or a single PB constraint of F . A variable vertex vx is connected to a
constraint vertex vc if the variable appears in that PB constraint. The LOW-MD
heuristic entails picking the variable that has the corresponding variable vertex in G

with the minimum degree. The heuristic is equivalent to a weighted version of the
min-degree heuristic on Gaifman graphs, where weights correspond to the number
of PB constraints in which two variables appear together.
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Algorithm 5.17: PBCount2 model counting with LOW-MD heuristic
Input : PB formula F , Projection set X, Non-projection set Y

Output : Model count
1: F Ω preprocess(F );
2: for all constraints c of F do
3: Compile ADD for c;
4: while Y ”= ÿ do
5: Â Ω ADD(1) ; Û ADD(1) returns ADD representing 1
6: y Ω popNextVar(Y );
7: foreach ADD Ï containing variable y do Â Ω Â ◊ Ï ;
8: Â Ω Â[y ‘æ 1] ‚ Â[y ‘æ 0] ; Û ÷-projection
9: while X ”= ÿ do

10: Â Ω ADD(1);
11: x Ω popNextVar(X);
12: foreach ADD Ï containing variable x do Â Ω Â ◊ Ï ;
13: Â Ω Â[x ‘æ 1] + Â[x ‘æ 0] ; Û �-projection
14: Â Ω ADD(1);
15: foreach remaining intermediate ADD Ï do Â Ω Â ◊ Ï ;
16: return Â.value;

The intuition behind LOW-MD stems from the observation that the algorithmic
complexity of merging two ADDs of size m, n is on the order of O(mn). As such, we
would like to reduce the size of operand ADDs as much as possible, especially when
the overall model counting algorithm involves many such ADD merging operations.
In the computation process, the size of an ADD reduces when a variable is projected
away. To ensure correctness, a variable can only be projected away when all ADDs
involving it have been merged [DPV20a]. Hence, we designed our LOW-MD heuristic
to pick the least frequently occurring variable to project away, as it involves merging
the fewest number of ADDs before projecting away the variable.

5.4.2 Projected Model Counting

Recall that in projected model counting, there are two non-overlapping sets of
variables X, Y where X is the projection set and Y is the non-projection set. The key
idea to support projected model counting is the di�erent way variables in X and Y

are projected away. For all variables x œ X, we project x away from an ADD Â using
Â Ω Â[x ‘æ 1] + Â[x ‘æ 0], also referred to as �-projection [DPV21]. In contrast, for
all variables y œ Y , we project away y from Â using Â Ω Â[y ‘æ 1] ‚ Â[y ‘æ 0], also
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referred to as ÷-projection [DPV21]. In addition, all variables in Y must be projected
away before any variable in X because the di�erent projection operations are not
commutative across variables in X and Y [DPV21]. To this end, we introduce
the LOW-MD ordering which is compatible with the projected model counting
ordering requirements. The overall flow of PBCount2 is shown in Figure 5.5, and
the pseudocode is shown in Algorithm 5.17.

In Algorithm 5.17, we employ the same preprocessing (line 1) and individual
constraint compilation techniques (line 3) as the original PBCount. Next, we process
each variable y in non-projection set Y by merging all ADDs containing y and
projecting away y from the merged ADD (lines 4-8). In lines 9-13, we do the same
for variables in projection set X. In each iteration of the merge and project process,
we select a variable using our LOW-MD heuristic, indicated by popNextVar(·) on
lines 6 and 11, and remove it from X or Y respectively. As discussed previously, the
LOW-MD ordering heuristic entails picking the variable that has the least occurrence
in the ADDs at that moment of the computation.

Algorithm Correctness The algorithm correctness of projected model counting of
PBCount2 follows prior work on projected CNF model counting with ADDs [DPV21].
Dudek, Phan, and Vardi showed that for projected CNF model counting correctness,
the computations should be performed according to an X, Y -graded project join tree.
In particular, performing ÷-projection at IY nodes and �-projection at IX nodes of
an X, Y -graded project join tree T produces the correct projected model count.
PBCount2’s algorithm correctness for projected PB model counting comes from the
fact that the computation in Algorithm 5.17 with LOW-MD heuristic implicitly
follows an X, Y -graded project join tree, and therefore produces the correct count.

Theorem 2. Let F be a formula defined over X fiY such that X is the projection set,
and Y is the set of variables not in projection set, then given an instance (F, X, Y ),
Algorithm 5.17 returns c such that c = q

—œ2X (max–œ2Y [F ](– fi —))

We show an adapted proof based on prior work [DPV21] for completeness.
We introduce additional notations and definitions that are relevant to the proofs
that follow. Let T = (T, r, “, fi) be a project join tree for PB formula F and
n œ V(T ) be a node in T . S(n) œ V(T ) denotes the set of all descendants of n,
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including itself. In other words, S(n) is the set of vertices of the subtree rooted
at n. Let P (n) = t

oœS(n)\L(T ) fi(o) be the set of variables projected in S(n). Let
�(n) = {“(l) : l œ L(T ) fl S(n)} be the set of PB constraints of F that are mapped
to the leaf nodes of S(n).

Definition 3 (Projected Valuation). Let (F, X, Y ) be a PB model counting
instance, with projection set X, non-projection set Y , and PB formula F . Let T

be an X, Y graded project join tree of F . The projected-valuation of each node
n œ V(T ), denoted gn, is defined as:

gn =

Y
______]

______[

[“(n)] if n œ L(T )
q

fi(n)(
r

oœCh(n) go) if n œ IX

÷fi(n)(
r

oœCh(n) g
W
o ) if n œ IY

Where [“(n)] is the representation of PB constraint “(n) œ F and Ch(n) refers to
the set of immediate child nodes of n in the project join tree.

Definition 4 (Early Projection). Let X and Y be sets of variables. For all
functions f defined over X and g defined over Y , f : 2X

æ R, and g : 2Y
æ R, if

x œ X \ Y then q
X(f · g) = (q

X f) · g and ÷X(f · g) = (÷Xf) · g

Lemma 1. Let n be an internal node in a project join tree T = (T, r, “, fi). Let o

and p be in Ch(n), and that o ”= p. Then P (o) fl Var(�(q)) = ÿ.

Proof. Let x be a variable in P (o), then x œ fi(s) for some internal node s that
is a descendant of o. Suppose that x appears in some arbitrary PB constraint c

of PB formula F . By definition of project join tree, the leaf node “
≠1(c) must be

a descendant of s and thus also a descendant of o. As o and q are sibling nodes,
variable x does not appear in any descendant leaf node of q and x ”œ Var(�(q)).
Thus P (o) fl Var(�(q)) = ÿ.

Lemma 2. Let (F, X, Y ) be a weighted projected model counting instance and T be
an X, Y graded project join tree for F . For every node n of T , let

hn =
Ÿ

Cœ�(n)
[C]
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Then
gn =

ÿ

P (n)flX
÷

P (n)flY

hn (5.1)

Proof. Let n be an arbitrary node in V(T ).

Case 1: Suppose n is a leaf node, that is n œ L(T ).
If n is a leaf node, then �(n) = {“(n)} and P (n) = ÿ. By definition of hn, hn =
r

Cœ{“(n)}[C] = [“(n)]. It follows that q
P (n)flX ÷P (n)flY hn becomes q

ÿ ÷ÿ hn = [“(n)].
Notice that this is exactly gn by Definition 3, for the case where n œ L(T ).

Case 2: Now we look at the case where n is an internal node of T , that is
n œ V(T ) \ L(T ).
Suppose for each child node o œ Ch(n), go = q

P (o)flX ÷P (o)flY ho. Then if we take
the valuation product, and substituting Equation 5.1, we have

Ÿ

oœCh(n)
go =

Ÿ

oœCh(n)

ÿ

P (o)flX
÷

P (o)flY

ho (5.2)

Since for o, q œ Ch(n) and o ”= q P (o) fl Var(�(q)) = ÿ by Lemma 1, then
P (o) fl Var(hq) = ÿ. As a result, by the applying early projection according to
Definition 4, we have

Ÿ

oœCh(n)
go =

ÿ

AflX

Ÿ

oœCh(n)
÷

P (o)flY

ho =
ÿ

AflX
÷

AflY

Ÿ

oœCh(n)
ho (5.3)

where A is t
oœCh(n) P (o).

Recall that the set of internal nodes, V(T ) \ L(T ) , of an T is partitioned by IX

and IY , definition of X, Y -graded project join tree. As such, there are two subcases,
where n is IX or IY .

Case 2a: n œ IY . For each p œ S(n), p œ IY and fip ™ Y by definition of
X, Y -graded project join tree. As such t

oœCh(n) P (o) or A is a subset of Y . Thus by
Definition 3 and Equation 5.3,

gn = ÷
fi(n)

Ÿ

oœCh(n)
go = ÷

fi(n)
÷
A

Ÿ

oœCh(n)
ho = ÷

P (n)

Ÿ

oœCh(n)
ho

Therefore,

gn = ÷
P (n)

Ÿ

oœCh(n)

Ÿ

Cœ�(o)
[C] = ÷

P (n)

Ÿ

Cœ�(n)
[C] = ÷

P (n)
hn
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Case 2b: n œ IX . Notice that fi(n) ™ X. Using Definition 3 and Equation 5.3,
we have

gn =
ÿ

fi(n)

Ÿ

oœCh(n)
go =

ÿ

fi(n)

Q

a
ÿ

AflX
÷

AflY

Ÿ

oœCh(n)
ho

R

b

Notice that fi(n) fi A = P (n) and also hn = r
oœCh(n) ho, therefore

gn =
ÿ

P (n)flX
÷

P (n)flY

Ÿ

oœCh(n)
ho =

ÿ

P (n)flX
÷

P (n)flY

hn

Lemma 3. The computation process in Algorithm 5.17 follows an X, Y graded
project join tree to compute projected valuation at each node.

Proof. We split the proof into two parts, first showing by construction that Algo-
rithm 5.17 follows an X, Y graded project join tree. Subsequently, we show that
the computation at each node is exactly according to the definition of projected
valuation.

Let T be a tree, with leaf nodes having a bijective relationship with the individual
ADDs at the start of computation of Algorithm 5.17 (line 3). Let each merged
intermediate ADD Â at lines 8 and 13 map to an internal node of T , with the
internal node’s descendants being all the ADDs (denoted Ï) involved in the merging
process at line 7 and 12 respectively. In addition, let the variable projected away in
the merge and project iteration be the label of the respective internal node given
by labelling function fi. The root node of T would correspond to the final merged
ADD Â at line 15 of Algorithm 5.17.

Recall that an X, Y -graded project join tree T has two disjoint sets of internal
nodes IX and IY , of X grade and Y graded respectively. The structural requirements
of X, Y -graded project join tree is such that nodes in IY cannot have any node of IX

as descendant in T . We let internal nodes of T mapped in line 7 of Algorithm 5.17
to be of grade IY and the internal nodes mapped in line 12 to be of grade IX . Notice
that we labelled all internal nodes, hence {IX , IY } is a partition of all internal nodes,
satisfying property 1 of definition of X, Y -graded project join tree. It is clear that
properties 2 and 3 of X, Y -graded project join tree are satisfied as the fi labels each
internal node n to the variables projected away from it.

75



Chapter 5. Alternative Logic Forms for Knowledge Compilation Applications

Since all internal nodes of grade IY are produced before IX by design of Algo-
rithm 5.17, none of the internal nodes of IX would be descendants of internal nodes
in IY , satisfying property 4 of X, Y -graded project join tree.

Recall that a project join tree’s labelling function fi should label each internal
node with a set of variables such the di�erent labels of internal nodes partition
the set of variables of the original PB formula F . For each variable v, notice that
Algorithm 5.17 only projects away v once, after merging the corresponding ADDs
containing v. Hence, there is no repetition of labels, and the labels of all internal
nodes partitions X fi Y .

In addition, an X, Y -graded project join tree has leaf nodes that has one to one
mapping “ to constraints in the original formula. In T , recall that each leaf node
is one-to-one mapped to an individual ADD at the start of Algorithm 5.17. Since
each individual ADD directly represents a constraint in the original PB formula,
leaf nodes of T have a bijection to constraints in the PB formula by transitivity. It
is clear that property 2 of project join tree holds, because at each merge and project
iteration, we merge all ADDs containing the selected variable (lines 7 and 12).

Since tree T arising from the computation process of Algorithm 5.17 meets
the specifications of an X, Y -graded project join tree, the computation process of
Algorithm 5.17 indeed follows T , an X, Y -graded project join tree.

Notice that at each leaf node n œ L(T ), we have the representation of a constraint
[“(n)], which is the individual ADD at the start of Algorithm 5.17. At each node n œ

IY , we merge the ADDs of descendants using the Apply operation with ◊ operator
and ÷-projection away variables labelled at n on line 8, computing ÷fi(n)(

r
oœCh(n) go).

Similarly at each node n œ IX , we again merge ADDs of descendants in the same
manner but �-projection away variables on line 13, computing q

fi(n)(
r

oœCh(n) go).
Since Algorithm 5.17 computations follow Definition 3 at all nodes, it computes gn.

Thus, we showed that the computation process in Algorithm 5.17 follows an
X, Y graded project join tree to compute projected valuation at each node.

We restate Theorem 2 for convenience and provide the proof as follows.

Theorem 2. Let F be a formula defined over X fiY such that X is the projection set,
and Y is the set of variables not in projection set, then given an instance (F, X, Y ),
Algorithm 5.17 returns c such that c = q

—œ2X (max–œ2Y [F ](– fi —))
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Proof. Let the root node of T be r. Notice that because r is the root node, �(r) = F

and P (r) = X fi Y . By Lemma 3, the computation process of Algorithm 5.17 follows
an X, Y graded project join tree T .

Using Lemma 2,

gr =
ÿ

X
÷
Y

hr =
ÿ

X
÷
Y

Ÿ

CœF

[C] =
ÿ

X
÷
Y

[F ]

Notice that q
X ÷Y [F ] is exactly q

—œ2X (max–œ2Y [F ](– fi —)). Hence, gr is the Y -
projected count of F and Algorithm 5.17 produces the count c = q

—œ2X (max–œ2Y [F ](–fi

—)).

5.4.3 Incremental Model Counting

Algorithm 5.18: Cache retrieval of PBCount2
Input : PB formula F

Õ

Output : Compute state - set of ADDs retrieved from cache
1: C

Õ
Ω getConstraintSet(F Õ);

2: A, B Ω ÿ ; Û Initialize 2 empty sets
3: for each ADD Â in cache do
4: if Â.constraints µ C

Õ and CheckNoExtraVar(Â, C
Õ) then insert Â into A;

5: for each ADD ÂA œ A do
6: conflicts Ω false;
7: for each ADD ÂB œ B do
8: if there exists x which is projected away in ÂA and not ÂB, or vice

versa then
9: conflicts Ω true;

10: if not conflicts then insert ÂA into B;
11: for all c œ C

Õ do
12: if c not represented in B then insert constraint ADD of c into B;
13: return B;

PBCount2 supports incremental PB model counting via the caching of interme-
diate ADDs during the handling of model count queries. In particular, PBCount2
supports the removal and addition of constraints in the PB formula. With reference
to Algorithm 5.17, we cache the ADDs Â at lines 8 and 13 respectively. In order to
store the compute state associated with an ADD, for cache retrieval purposes, we
store 3 pieces of information: 1) the set of constraints in PB formula that the ADD
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represents 2) the projection set variables of ADD that have been projected away
and 3) the non-projection set variables of ADD that have been projected away.

The cache retrieval mechanism is shown in Algorithm 5.18. When given PB
formula F

Õ, modified from F by adding or removing constraints, the core idea is to
loop through the ADDs in the cache and retrieve the compatible ADDs, replacing the
initial ADDs at line 3 of Algorithm 5.17. An ADD Â is compatible with F

Õ if the set
of constraints that Â represents is a subset of the constraints of F

Õ. In the case where
a constraint was removed, the corresponding ADDs will not be considered, as they
contain constraints not in F

Õ. In addition, the variables that have been projected
out from Â must not appear in any constraint of F

Õ that Â does not represent,
this is handled by CheckNoExtraVar(·) in Algorithm 5.18 line 4. Subsequently, from
lines 5-10, we verify that each ADD that we retrieved is compatible with all other
already retrieved ADD candidates in B. Finally, for all constraints that are not
represented by an ADD in B, we insert an ADD representing each constraint into
B. Cache retrieval replaces lines 1 to 3 of Algorithm 5.17. It is worth noting that
caching ADDs requires us to disable preprocessing currently, as there is a need
to maintain a unique id for each constraint and also a fixed variable-to-constraint
relation. The restriction arises from the fact that we have to maintain ADD to
variable mapping for ADDs in the cache to perform retrieval compatibility checks in
Algorithm 5.18. Preprocessing might remove variables and modify constraints, thus
invalidating cached ADDs. Hence we have currently disabled preprocessing when
handling incremental counting.

5.5 Top-Down Model Counting
In this section, we explore the top-down PB model counter design for com-

pleteness, in context of PB model counting. We detail the general algorithm of
our top-down PB model counter PBMC as well as design decisions that enable a
performant PB counter.

5.5.1 Search-Based Algorithm

The overall counting approach of PBMC is shown in Algorithms 5.19 and 5.20.
CountPBMC starts with preprocessing the input PB formula F with techniques
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Algorithm 5.19: CountPBMC – Counting Algorithm of PBMC
Input : PB formula F

Output : Model count
1: F Ω Preprocess(F ) ;
2: component Ï Ω F ; cache ’ Ω ÿ; assignment · Ω ÿ ;
3: Count(Ï, ·, ’);
4: return ’[Ï];

adapted from existing state-of-the-art counters [YM24]. Subsequently, Count sets
the preprocessed F as the root component, and initializes an empty cache ’ and
an empty assignment · . CountPBMC calls Count to search the space of assignments
and compute the model count. The main computation process of PBMC in Count
comprises of the following steps – propagation (line 2), conflict handling (lines 3–7),
variable decision (lines 11–13), and component decomposition (line 9). As shown in
Count, PBMC starts with propagation so that variable decisions can be inferred and
applied. If the propagation leads to a conflict, PBMC would perform conflict analysis
and backjumping using similar techniques as RoundingSat [EN18] (lines 5–6). If the
conflict is a top-level conflict, which cannot be resolved by backjumping, PBMC will
terminate and return 0 as the formula is unsatisfiable (line 7). Otherwise, PBMC
learns a PB constraint that prunes the search space, backjump to the appropriate
decision level d, and clear components and recursive calls created after d.

If there are no conflicts, PBMC will attempt to split the current component
into variable-disjoint child components, and the count of the current component
would be the product of child component counts (lines 9–10). There are two cases
of component splitting – (i) there are no new disjoint components and (ii) there
are new disjoint components. In case (i) PBMC will proceed to branch on another
variable, and the count of the current component would be the sum of counts from
the two branches (lines 12–13). If there are no unassigned variables remaining, the
count of the current component would be 1 (line 14). Finally, after completing the
implicit search tree exploration PBMC returns the count of F in cache ’.

Conflict Analysis and Backjump We provide a brief overview of the conflict
analysis and backjumping mechanism (on lines 5 and 6 of Algorithm 5.20), adapted
from RoundingSat [EN18]. On a high level, the Backjump() mechanism backtracks
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Algorithm 5.20: Count – helper function of CountPBMC
Input : component Ï, assignment · , cache ’

1: if Ï entry in ’ then return ’[Ï];
2: isConf Ω propagate(·);
3: if isConf then
4: ’[Ï] Ω 0;
5: success Ω ConflictAnalysis(·) ;
6: if success then Backjump() Û Clears related cache & recursive calls ;
7: else ExitReturnZero() Û Unresolvable conflict, return 0 ;
8: else
9: C Ω SplitComponent(Ï, ·) ;

10: if |C| > 1 then ’[Ï] Ω
r

cœC Count(c, ·, ’);
11: else if Ï has unassigned variable then
12: l Ω pickNextLit(Ï, ·);
13: ’[Ï] Ω Count(Ï · l, · fi {l}, ’) + Count(Ï · l̄, · fi {l̄}, ’) ;
14: else ’[Ï] Ω 1 ;
15: return ’[Ï]

the variable assignments in chronological order to a state where the learnt constraint
is asserting i.e. when the learnt constraint will cause a propagation. The conflict
analysis process will determine the variable decision level to backjump to. The
conflict analysis mechanism starts with the constraint that is in conflict, as well
as the reason constraint that resulted in the conflict-causing propagation. The
conflict analysis process involves applying the RountToOne routine introduced in
RoundingSat [EN18] to both the conflict constraint and reason constraint. The
RountToOne routine of a constraint outputs a weakened constraint that has some
literals removed and right-hand side k value adjusted accordingly. The next step
would be to resolve the two aforementioned constraints on the last assigned literal
in the current partial assignment to get an intermediate constraint. Subsequently
the last assignment is undone and the process repeats until the repeatedly updated
intermediate constraint is asserting, at which point it is the learnt constraint.

5.5.2 VCIS Variable Decision Heuristic

In our top-down PB model counter PBMC, we introduce a variable decision
ordering heuristic that we term variable coe�cient impact score (VCIS). The intuition
for a new variable decision heuristic for PB formulas came from the fact that the

80



Chapter 5. Alternative Logic Forms for Knowledge Compilation Applications

coe�cient of each literal a�ects its impact on the overall counting process. Existing
variable decision heuristics from CNF model counting literature do not have to
consider the impact of coe�cients, and therefore modifications are required to adapt
to PB model counting. Additionally, tree decomposition may also be less e�ective
when dealing with PB constraints that are relatively longer or constraints that share
a lot of variables as in the case of multi-dimensional knapsack problems.

In our VCIS heuristics, we add a coe�cient impact score for each variable
as an equal-weighted additional component to prior variable decision heuristics
adopted from GPMC. The coe�cient impact score for a variable x is given by
1q

jœ�x
b

j
x/kj

2
÷ |�x| where �x is the set of constraints that variable x appears in, b

j
x

is the coe�cient of x in constraint j, and kj is the degree of constraint j. At the start
of the counting process, the score for each variable is computed, and variables are
decided in descending order of scores in the counting process. In addition, the phase
preferences of variable decisions are set such that the term coe�cient with the largest
coe�cient impact score is applied, this is reflected in line 12 of Algorithm 5.20. The
intuition is that branching on a variable with a larger score would have a greater
impact on gaps than that on a variable with a smaller score.

5.5.3 Caching Scheme and Optimization

After computing the count of each component, we store it in the cache to avoid
redundant computations when the same component is encountered in a di�erent
branch of the counting process. A component in our caching scheme contains the
following information for unique identification – 1) the set of unassigned variables in
the component, 2) the set of yet-to-be-satisfied PB constraints in the component,
and 3) their current gaps. In our implementation, we stored variables and constraints
of a component by their IDs.

Lemma 4. Given a PB formula F and partial assignments · and ·
Õ. Let component

c be that of F |· and c
Õ be that of F |· Õ. If VarIDs(c) = VarIDs(cÕ), CstrIDs(c) =

CstrIDs(cÕ), and each constraint Ê in c satisfies gap(Ê, ·) = gap(Ê, ·
Õ), then c = c

Õ.

Proof. It is clear that Vars(c) = Vars(cÕ). For each constraint Ê with CstrID(Ê) œ

CstrIDs(C), Ê· and Ê· Õ appear in c and c
Õ, respectively. As Vars(c) = Vars(cÕ),
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the left-hand side of Ê· is the same as that of Ê· Õ. Then we know Ê· = Ê· Õ as
gap(Ê, ·) = gap(Ê, ·

Õ).

In our implementation, we cache the variable and constraint IDs in ascending
order, thereby only needing to record the first ID and the di�erences between each
i
th and i + 1th. Since a di�erence is often smaller than an ID, we can use fewer bits

to record each component. Since each gap s is positive, we can record it as s ≠ 1.
Additionally, we do not record gap for a clausal constraint, that is a constraint with
coe�cients and degree 1. Such a scheme is particularly e�cient for the constraints
with a lot of literals.

As a cache entry optimization trick to increase the cache hit rate, we perform
saturation on the gaps during the generation of component cache IDs. The intuition
for gap saturation comes from existing literature on PB solving where saturation is
performed on the coe�cients of a PB constraint [EN18] i.e. a term ax in the PB
constraint is modified to kx where k is the degree when a > k. Given a PB constraint
qm

j=1 ajxj Ø s where s is the gap, our caching scheme changes s in the cache ID to
min aj over all coe�cients aj of unassigned variables when 0 < s < min aj. This is
sound as assigning any of the remaining literals to true would lead to the constraint
being satisfied which is the same outcome without modification of s i.e. the resulting
gap being 0 or negative.

5.6 Experiments
We performed extensive empirical evaluations to understand the performance

impact of our attempt to use alternative logic form for the model counting task.
More specifically, we evaluate PBCount to understand the main impact of introducing
preprocessing and ADD compilation methods for PB formula input. Subsequently,
we evaluate PBCount2 which extends PBCount with projected and incremental
counting features via our LOW-MD heuristic and caching mechanism. In addition,
we include PBMC in the evaluations to understand the performance of di�erent
design paradigms in context of PB model counting. Our empirical evaluation focuses
on benchmarks arising from three application domains: sensor placement, auctions,
and multi-dimensional knapsack. In particular, we measure the amount of benchmark
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instances that each approach could complete, i.e. the number of instances each
approach could return counts for in the case of PB model counting.

Through our evaluations and analysis, we sought to answer the following research
questions:

RQ 1 How does the runtime performance of PBCount compare to that of the
state-of-the-art baselines?

RQ 2 How does the dynamic compilation approach impact the runtime performance
of PBCount?

RQ 3 How does PBCount2 perform on projected PB model counting?

RQ 4 How does PBCount2 perform under incremental settings?

RQ 5 How does the top-down PB counter PBMC compare to existing bottom-up
PB counters PBCount2 and PBCounter?

RQ 6 How does the VCIS variable decision heuristics impact the runtime perfor-
mance of PBMC?

Setup We performed our evaluations across machines with AMD EPYC 7713
and 7763 processors, with each set of comparisons performed on machines with
the same configuration. Each benchmark instance is provided with 1 core, 16GB
memory, and a timeout of 3600 seconds. We implemented our bottom-up PB counter
prototypes PBCount and PBCount2 in C++ using the CUDD [Som15] library and
double precision, due to the limitations of CUDD not supporting arbitrary precision
ADDs. We implemented our top-down PB counter prototype PBMC in C++ with
GMP, MPFR, Boost library, and code adapted from RoundingSat and GPMC. Since
all the state-of-the-art exact model counters take CNF as input, we employed the
CNF model counters with the help of PB to CNF conversion tool PBLib1 [PS15]. We
first evaluated PBCount against state-of-the-art projected counters DPMC, D42, and
GPMC in RQ 1 and RQ 2. D4 and GPMC are among the winners of the Projected
counting track at Model Counting Competition 2022 and 2023. Subsequently in

1
We used the provided PBEncoder for conversion.

2
Binary from Model Counting Competition 2022
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RQ 3 and RQ 4, we evaluated PBCount2 against D4 and GPMC as DPMC was not
competitive in the previous comparison. Finally, to have a complete picture of the
performance of the two major counter paradigms in context of PB model counting, we
evaluated PBMC against existing state-of-the-art PB counters PBCount2, PBCounter,
and model counting competition 2024 winner Ganak in RQ 5 and RQ 6.

Benchmarks We generated 3500 benchmarks of the following application areas –
sensor placement, auctions, and multi-dimension knapsack. We detail the benchmark
statistics (number of variables and constraints) in the Tables 5.1, 5.2 and 5.3.

• The sensor placement benchmark setting (1473 instances after removal of
0 counts from the 1500 generated instances) is adapted from prior work on
identifying code sets [LSM23]. Given a network graph, a maximum number of
sensors allowed, count the number of ways to place sensors such that failures
in the network are uniquely identifiable.

• For the auction benchmark setting (1000 instances), we adapt the combinatorial
auction setting [BN07] to a counting variant. There are m participants and
n items, each of which can be shared by one or more participants. Given
that each participant has a minimum utility threshold, we count the number
of ways the n items can be shared such that all participants achieve their
minimum threshold. The utilities are additive and can be negative.

• For the multi-dimension knapsack benchmark setting [GL80] (1000 instances),
there are n items and constraints on m di�erent features or dimensions of the
items in the form of the sum of each dimension should not exceed a given
constant. Given such a setting, the goal would be the count the number of
subsets of items that satisfy the constraints.

Table 5.1 shows the benchmark statistics for the auction setting. We show the
minimum number, 25th percentile, median, 75th percentile, and max value for the
number of variables, constraints, and clauses for both PB formula and converted
CNF formula. The ‘# PB variable’ and ‘# PB constraint’ columns show statistics
for the number of variables and constraints in the 1000 PB formulas (each PB
formula is one benchmark), on median (‘50%’ row) the PB benchmarks have 91
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Statistics # PB variable # PB constraint # CNF variable # CNF clause

Min 5 1 5 1

25% 60 4 15830 28456

50% 91 9 41900.5 77265.5

75% 131 14 80270 147022.75

Max 252 20 234777 474900

Table 5.1: Statistics of the number of variables, number of constraints, and number
of clauses for PB and CNF formula in the auction benchmarks

Statistics # PB variable # PB constraint # CNF variable # CNF clause

Min 5 1 28 38

25% 86.75 6 7866 14871.25

50% 164 10 25212 46340

75% 234 15 50670.5 92525.25

Max 300 20 171632 314821

Table 5.2: Statistics of the number of variables, number of constraints, and number
of clauses for PB and CNF formula in the M-dim knapsack benchmarks

Statistics # PB variable # PB constraint # CNF variable # CNF clause

Min 1 2 1 1

25% 25 291 158 539.75

50% 81.5 1210 1154 3745.5

75% 190 7056.5 3932 12902.5

Max 300 44552 7699 55514

Table 5.3: Statistics of the number of variables, number of constraints, and number
of clauses for PB and CNF formula in the sensor placement benchmarks

variables and 9 constraints. Similarly, the numbers for the converted CNF formulas
are shown under ‘# CNF variable’ and ‘# CNF clause’ columns. The CNF version
of the benchmarks have on median 41900.5 variables and 77265.5 clauses, which is 4
to 5 orders of magnitude larger than that of the PB version, this strongly supports
our claim that PB formulas are more succinct than CNF formulas. The observation
also holds for M-dim knapsack benchmarks (multidimension knapsack) which we
show the stats for in Table 5.2.

However, the di�erence is not as large in sensor placement benchmarks, because
the coe�cients and k values are predominantly 1 and -1 except for the budget
constraint which indicates the maximum number of sensors one could place. As
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such the sensor placement benchmarks are also more amenable to CNF encodings,
unlike auction and knapsack benchmarks with di�erent coe�cients. We show the
benchmark statistics for sensor placement settings in Table 5.3.

Projected Counting and Incremental Counting Benchmarks In projected
PB counting and incremental counting evaluations, we use the same aforementioned
benchmarks. In projected PB counting evaluations, the projection set is randomly
selected from the original variables. The CNF counters use benchmarks converted us-
ing PBLib [PS15], with the same projection set. For incremental counting evaluations,
each benchmark involves computing the model count for a given PB formula (step 1)
and each of the 2 (4) subsequent modification steps for 3-step (5-step) configurations.
Each modification step involves modifying an existing constraint, selected at random
from the set of constraints of the PB formula. The modifications for the auction
benchmarks correspond to updates to utility values, i.e. when preferences change.
The modifications for the knapsack benchmarks correspond to changes to constraints
of a particular dimension. Finally, the modifications to the sensor placement bench-
marks correspond to additional requirements for redundancy of sensors at important
locations in the graph. We provided each step of the incremental benchmarks as
separate instances to competing approaches, as none of them supported incremental
counting.

5.6.1 RQ1: PB Model Counting Performance

We first look at the runtime performance of PBCount, where the core idea is
in the ADD compilation methodology for PB constraints, allowing for native PB
model counting.

We show the cactus plot of the number of instances completed by each counter
out of the 3500 benchmarks in Figure 5.6. The exact number of instances completed
by each counter for each benchmark set is shown in Table 5.4. Additionally, we
provide individual cactus plots for each set of benchmarks in the Figure 5.7.

In sensor placement benchmarks, PBCount count completed 638 instances, nar-
rowly ahead of DPMC (625 instances), and more than D4 (566 instances) and GPMC
(575 instances). In multi-dimension knapsack (M-dim knapsack) and auction
benchmarks, PBCount significantly outperforms the competing counters. PBCount
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Figure 5.6: Cactus plot of number of benchmark instances completed by di�erent
counters. A point (x, y) on each line plot indicates the corresponding counter
completes x number of benchmarks after y seconds has elapsed.
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(a) Sensor placement
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(b) M-dim Knapsack
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(c) Auction

Figure 5.7: Cactus plots of di�erent benchmark sets. A point (x, y) on each line
plot indicates the corresponding counter completes x number of benchmarks after y

seconds has elapsed.

Benchmarks DPMC D4 GPMC PBCount
Sensor placement 625 566 575 638
M-dim knapsack 81 281 279 503
Auction 76 116 159 372

Total 782 963 1013 1513

Table 5.4: Number of benchmark instances completed by each counter in 3600s,
higher is better. Excluding 0 count benchmark instances.
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completed 503 M-dim knapsack instances, around 1.8◊ that of GPMC (279 in-
stances) and D4 (281 instances), and 6.2◊ that of DPMC (81 instances). In auction
benchmarks, PBCount completed 372 instances, around 2.3◊ that of GPMC (159
instances), 3.2◊ of D4 (116 instances), and 4.9◊ of DPMC (76 instances). Overall,
PBCount completed 1513 instances out of 3500 total instances, around 1.5◊ that
of GPMC, 1.6◊ of D4, and 1.9◊ that of DPMC. Note that PBCount achieved su-
perior performance with minimal preprocessing over GPMC, which has advanced
preprocessing capabilities.

5.6.2 RQ2: Analysis of ADD Compilation Approaches

We now focus on the analysis of di�erent compilation approaches: top-down
(Algorithm 5.11), bottom-up (Algorithm 5.10), and dynamic (Algorithm 5.15). The
results in Table 5.5 show that for the benchmarks, bottom-up PB constraint compi-
lation outperforms top-down approach significantly in auction and multi-dimension
knapsack and to a lesser degree sensor placement. In addition, the evaluation result
also highlights that our dynamic compilation heuristic and constraint term opti-
mization closely match the bottom-up approach, with the exception of completing
3 fewer instances in auction benchmarks. However, in the 372 auction instances
completed by both bottom-up and dynamic approaches, the dynamic approach with
term coe�cient optimization completes the counting task faster for 257 instances.
We show the individual scatter plots for each benchmark set between dynamic and
bottom-up approach in Figure 5.8.

Benchmarks Top-down Bottom-up Dynamic

Sensor placement 580 638 638

M-dim knapsack 109 503 503

Auction 158 375 372

Table 5.5: Number of benchmarks completed by PBCount when employing di�erent
compilation strategies, higher number indicates better performance.

Compilation Approach Performance Case Study We provide an example
to highlight the performance impact of the choice of compilation approach. The
example involves the following PB formula in Equation 5.4 with a single constraint
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(b) M-dim Knapsack

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bottom up runtime (log10 axis)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
yn

am
ic

ru
nt

im
e

(lo
g 1

0
ax

is
)

(c) Auction

Figure 5.8: Scatter plots of runtimes of di�erent benchmark sets between bottom-up
and dynamic compilation approaches. Points beneath red diagonal line indicate
dynamic compilation is faster, points above otherwise.

that has unique term coe�cients:

12ÿ

i=0
2i

xi+1 +
10ÿ

i=1
3i

xi+13 +
7ÿ

i=1
7i

xi+23 Ø k (5.4)

We vary the value of k in the above PB constraint from 101 to 105 and compare
the runtime between top-down and bottom-up compilation approaches in Table 5.6.
Note that bottom-up compilation takes around the same time irrespective of k as
there is no early termination. On the other hand for top-down compilation, the PB
constraint is easily satisfied when k is small and thus allows for early termination,
leading to significant time savings compared to when k is large. Notice that when
top-down compilation is unable to terminate early, it is much slower than bottom-up
compilation even when all term coe�cients are unique.

Approach
k value

10
1

10
2

10
3

10
4

10
5

Top-down 0.005 0.009 0.228 8.586 46.071

Bottom-up 6.927 7.202 7.198 7.434 6.732

Table 5.6: Runtime (seconds) to complete model counting for formula in Equation 5.4.
Lower is better

As mentioned previously, bottom-up compilation benefits from having large
numbers of same term coe�cients or collisions in subset sums of coe�cients. To
this end, we changed all term coe�cients of the PB constraint in equation 5.4
to 1 and compared runtimes in Table 5.7. We observed around three orders of
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Approach
k value

10
1

10
2

10
3

10
4

10
5

Top-down 3.325 61.753 60.530 60.881 64.097

Bottom-up 0.005 0.004 0.004 0.004 0.004

Table 5.7: Runtime (seconds) to complete model counting for formula in Equation 5.4
with all coe�cients set to 1.

magnitude reduction in the runtime of the bottom-up compilation approach. In
contrast, the top-down approach terminates early only in k = 101 case and requires
full enumeration in other cases. In the absence of early termination, top-down
compilation approach is much slower than bottom-up compilation approach, and
this is reflected in our dynamic compilation heuristic.

5.6.3 RQ3: Projected PB Model Counting Performance

In this rest of this section, we focus on PBCount2, which is an extension of
PBCount with the projected and incremental model counting features.
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Figure 5.9: Runtime cactus plots of PBCount2 and competing methods for each
benchmark set, for projected model counting.

Benchmarks D4 GPMC PBCount2
Auction 460 364 561
M-dim knapsack 321 366 709
Sensor placement 617 585 687
Total 1398 1315 1957

Table 5.8: Number of projected benchmark instances completed by D4, GPMC and
PBCount2 in 3600s, higher is better.

90



Chapter 5. Alternative Logic Forms for Knowledge Compilation Applications

0 100 200 300 400

Instances completed
0

400

800

1200

1600

2000

2400

2800

3200

3600

Ti
m

e
el

ap
se

d
(s

)

PBCount2 PBCount GPMC D4

(a) Auction

0 100 200 300 400 500 600 700

Instances completed
0

400

800

1200

1600

2000

2400

2800

3200

3600

Ti
m

e
el

ap
se

d
(s

)

PBCount2 PBCount GPMC D4

(b) M-dim Knapsack

0 100 200 300 400 500 600 700

Instances completed
0

400

800

1200

1600

2000

2400

2800

3200

3600

Ti
m

e
el

ap
se

d
(s

)

PBCount2 PBCount GPMC D4

(c) Sensor placement

Figure 5.10: Runtime cactus plots of PBCount2 and competing methods for each
benchmark set, for incremental model counting with 5 steps.

Experiment Counter Auction M-dim knapsack Sensor placement Total

D4 85 179 536 800

GPMC 130 216 586 932

PBCount 312 458 657 1427

PBCount2 369 629 660 1658
D4 77 169 430 676

GPMC 117 196 573 886

PBCount 289 432 650 1371

PBCount2 359 605 654 1618

3-step

5-step

Table 5.9: Number of incremental benchmark instances completed by PBCount2,
PBCount, D4, and GPMC in 3600s, higher is better. ‘3-step’ indicates results of
incremental PBCount2 with 3 counting steps, and ‘5-step’ indicates that with 5
counting steps.

We conducted extensive evaluations to understand the performance of PBCount2
compared to state-of-the-art projected CNF model counters D4 and GPMC [LM17;
RS17]. We show the results in Table 5.8 and cactus plots in Figure 5.9. PBCount2
is able to complete 1957 instances, demonstrating a substantial lead over the 1398
instances of D4 and the 1315 instances of GPMC. Overall, PBCount2 solves around
1.40◊ the number of instances of D4 and 1.49◊ that of GPMC, highlighting the
e�cacy of PBCount2 in projected PB model counting tasks.

5.6.4 RQ4: Incremental Counting Performance

We conducted experiments to analyze the performance of PBCount2’s incremental
mode against the state-of-the-art PBCount and CNF counters. In our experiments,
we looked at the 3-step and 5-step benchmark configurations. The experiments were
run with a total timeout of 3600s for the two benchmark configurations. The results
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are shown in Table 5.9.
In the 3-step benchmarks, PBCount2 shows a considerable performance advantage

over D4, GPMC, and PBCount. More specifically, PBCount2 completed 2.07◊ the
number of benchmarks completed by D4, 1.78◊ that of GPMC, and 1.16◊ that of
PBCount respectively. Across all 3 incremental benchmark sets for 3-step experiments,
PBCount2 performs the same as or better than PBCount. As we move to 5-step
benchmarks, we see PBCount2 having a more significant lead over the competing
methods. Overall, PBCount2 completes 2.39◊ the number of instances of D4, 1.83◊

that of GPMC, and 1.18◊ that of the original PBCount. Notably when moving from
3-step benchmarks to 5-step benchmarks, the drop in the number of completed
incremental benchmarks of PBCount2 is only 40, compared to 56 for PBCount, 46
for GPMC, and 124 for D4. Additionally, we show the cactus plots of each set
of incremental benchmarks under 5-step benchmark configuration in Figure 5.10.
The plot further highlights the runtime advantages of PBCount2 over competing
approaches. Overall, the evaluations demonstrate the e�cacy of PBCount2 at
handling incremental PB model counting, as opposed to existing approaches that
can only treat each incremental step as a separate model counting instance.

5.6.5 RQ5: Top-Down PB Model Counting Performance

In order to have a more complete understanding of how the two major counter
designs perform for PB model counting, we revisit our evaluations in RQ1 and
include evaluations for our top-down search-based model counter PBMC. In addi-
tion, we include evaluations of more recent counters, namely PB model counters
PBCounter [LXY24] and PBCount2 [YM25], as well as CNF model counting compe-
tition 2024 winner Ganak [Sha+19]. The appended results are shown in Table 5.10
and cactus plots are shown in Figure 5.11.

Overall, PBMC is able to return counts for 1849 instances, 76 instances more
than that of PBCount2, 341 instances more than PBCounter, and 685 instances more
than Ganak. There is a clear performance separation between native PB model
counters and CNF counters with conversion approach. In the evaluation, PBMC
leads in auction and M dim-knapsack benchmark sets and came in second in the
sensor placement benchmark set. It is also worth noting that PBCount2 with our
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Figure 5.11: Runtime cactus plots of D4, DPMC, Ganak, GPMC, PBCount, PBCount2,
PBCounter, and PBMC with 3600s timeout. A point on the plot indicates the
respective counter could return counts for x instances in y time.

Counters Auction M-dim knapsack Sensor placement Total

DPMC 76 81 625 782

D4 116 281 566 963

GPMC 159 279 575 1013

Ganak 198 372 576 1164

PBCount 372 503 638 1513

PBCount2 407 701 665 1773

PBCounter 371 503 634 1508

PBMC 503 702 644 1849

Table 5.10: Number of benchmark instances completed by each of the respective
counters in 3600s, higher is better. The first top half counters (DPMC to Ganak) are
CNF counters, and the bottom half are native PB counters.

new LOW-MD merge ordering heuristic performs significantly better than the first
version of PBCount.

5.6.6 RQ6: Performance Impact of VCIS Heuristics

We conducted further experiments to understand the impact of our VCIS heuristic
as introduced previously. In particular, we compared our implementation of PBMC
with VCIS against a baseline version of PBMC that uses the existing variable decision
heuristics from the GPMC model counter. The results are shown in Table 5.11.

In the evaluations, PBMC with our VCIS variable decision heuristic (VCIS-heu) is
able to return counts for 1849 benchmark instances in total, substantially more than
the 1772 benchmark instances when PBMC is coupled with the existing heuristics
from GPMC (GPMC-heu). In particular, VCIS-heu returned counts for 115 more
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Counters Auction M-dim knapsack Sensor placement Total

GPMC-heu 541 587 644 1772

VCIS-heu 503 702 644 1849

Table 5.11: Number of PB benchmark instances counted by PBMC, using VCIS and
GPMC variable decision heuristics in 3600s.

instances than GPMC-heu in M-dim knapsack benchmarks, while losing out 38
instances in Auction benchmarks. Both heuristics performed the same in sensor
placement benchmarks. This set of evaluations highlights the tremendous impact of
variable decision ordering in the context of PB model counting and demonstrates
the performance benefits of our VCIS variable decision heuristic.

5.6.7 Additional Comparisons and Observations

Ganak PBCounter PBCount2 PBMC
761 682 289 741

Table 5.12: Number of benchmark instances completed by each of the respective
counters in 3600s for benchmark by Lai, Xu, and Yin.

Ganak (no pp) PBCount2 (Bouquet Tree) PBMC (no pp)

499 685 740

Table 5.13: Number of benchmark instances completed by each of the respective
counters with di�erent configurations in 3600s for benchmark by Lai, Xu, and Yin.
A counter with ‘no pp’ refers to the counter having preprocessing disabled (for Ganak
we only disable Arjun preprocessing). ‘Bouquet Tree’ refers to PBCount2 running
with the ‘Bouquet Tree’ as ADD merge order heuristic.

Apart from our benchmarks, we further conducted comparisons on a di�erent
set of benchmarks used by a recently published work [LXY24] for completeness.
We compared PBCounter, PBCount2, Ganak, and PBMC on the aforementioned
benchmarks. We adapted the benchmarks for Ganak by performing the conversion
using the same PBEncoder as we did for our benchmarks and removed the instances
that were not successfully converted. We show the number of instances each counter
could complete, and disregard the unsatisfiable instances i.e. those with 0 counts.
The results are shown in Table 5.12 and 5.13
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The results show two main observations, the first being that preprocessing
contributes a significant portion to a modern CNF counter’s performance as we
see Ganak leading with 761 instances counter dropping to 499 instances when
preprocessing is disabled. Whereas the same is not true for PB model counters, as
we can see from the performance of PBMC with and without preprocessing resulting
in a change of only 1 instance. The second observation is that PB model counters
tend to be very sensitive to heuristics, as we can see from the drastic performance
discrepancy of PBCount2 when using LOW-MD (Table 5.12) and ‘bouquet tree’
(Table 5.13) ADD merging heuristics.

We studied the benchmarks by Lai, Xu, and Yin in detail and compared it
to the benchmarks that we used in prior evaluations. The two di�erent suites of
benchmarks are of very di�erent characteristics as we show in Tables 5.14, 5.15,
and 5.16.

Percentile Auction Knapsack Sensor LXY24

25% 0.000 0.000 0.9965 0.3818

50% 0.000 0.000 0.9992 0.8130

75% 0.000 0.100 0.9999 1.0000

Table 5.14: Percentile statistics of ratio of constraints in each PB instance that
has only ‘1’ as term coe�cients. ‘LXY24’ and ‘50%’ value of 0.8130 means that on
median, a PB instance in LXY24 benchmark set has about 81.3 percent of its PB
constraints having only coe�cient value of 1. ‘LXY24’ refers to the benchmark set
adapted from PBCounter work [LXY24].

Percentile Auction Knapsack Sensor LXY24

25% 0.3798 0.9885 0.9600 0.0846

50% 0.5567 0.9939 0.9877 0.1447

75% 0.8024 0.9957 0.9947 0.1688

Table 5.15: Percentile statistics of median PG degree
num var of the benchmark instances in

di�erent benchmark sets, where PG stands for primal graph. Primal graph have
variables as nodes, and nodes are connected if they appear in same PB constraint.
‘LXY24’ refers to the benchmark set adapted from PBCounter work [LXY24].

There is a clear separation between Auction, Knapsack, Sensor and LXY24
when looking at the length of PB constraints (number of literals in the constraint)
from each set of benchmarks (Table 5.16), with LXY24 having the smallest median
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Percentile Auction Knapsack Sensor LXY24

25% 22.000 24.000 10.000 2.000

50% 27.000 30.000 11.000 4.000

75% 32.625 36.000 23.000 8.000

Table 5.16: Percentile statistics of median PB constraint lengths of each benchmark
PB formula instance, of the di�erent benchmark sets. ‘Auction’ and ‘25%’ value
of 22 means that the 25th percentile of median PB constraint length across all PB
formula instances in ‘Auction’ benchmark is 22. ‘LXY24’ refers to the benchmark
set adapted from PBCounter work [LXY24].

value of 4 for the median PB constraint length among the benchmarks. When
looking at the ratio of PB constraints in the benchmark instances that have only 1
as coe�cients (Table 5.14), there again is a clear separation between (a) Auction
and Knapsack benchmarks which have almost none and (b) Sensor and LXY24
benchmarks which comprises largely of such constraints. Finally, the primal graph
of PB instances in LXY24 is also much less relatively connected compared to the
other benchmarks when looking at Table 5.15. In fact, the median of median primal
graph node degree is 21 for LXY24, 47 for Auction, 80.5 for Sensor, and 163 for
Knapsack.

5.7 Summary
In this chapter, we demonstrate the core idea of the alternative logic pillar of our

framework on scaling knowledge compilation applications. We did this over a series
of work that introduced the first exact PB model counter PBCount, subsequently the
first projected PB model counter and incremental counter PBCount2, and finally the
first top-down PB model counter PBMC. The evaluations on PBCount highlight the
potential scalability improvements in practice from considering alternative input logic,
in this case PB, when designing knowledge compilation applications. In particular,
PBCount completed 1.9◊ the number of benchmark instances of DPMC, which also
uses an ADD counting approach but takes CNF formulas as input. Additionally,
the evaluations on PBCount and subsequently PBCount2 further demonstrate the
potential in considering alternative logic forms, both managed to have a sizable
lead over state-of-the-art projected CNF counters arising from decades of works.
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Finally, the evaluations on PBMC present the full picture of PB model counting,
showing that both top-down and bottom-up approaches when adapted to natively
handling PB formula input, have the potential to perform much better than existing
state-of-the-art CNF counters. Additionally, the evaluations also highlight some of
the current limitations of the PB counters, mainly that they are rather sensitive to
heuristics and that the type of PB instances that each heuristic performs well on
has yet to be studied in su�cient detail.
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Chapter 6

Concluding Remarks and Open Prob-
lems

6.1 Concluding Remarks
In the chapters thus far, this thesis presented the ERA framework for improv-

ing the scalability of applications involving knowledge compilation techniques. In
particular, this thesis has introduced three di�erent perspectives when approach-
ing application scenarios involving knowledge compilation techniques – a) e�cient
usage of knowledge compilation diagrams b) recoverable approximations when look-
ing at application settings as a whole c) usage of alternative logic input forms to
describe problems. The three di�erent perspectives are demonstrated in various
scenarios ranging from pseudo-boolean model counting to incremental sampling and
recoverable approximations in route sampling. In each of the application scenar-
ios demonstrated, the prototype implementations demonstrated better scalability
compared to the relevant state-of-the-art approaches at the time the ideas were
published. In summary, this thesis presents the ERA framework for thinking about
the scalability of knowledge compilation applications and should be used in tandem
with existing techniques to further scale the applications. The ERA framework is or-
thogonal to both methodologies focusing specifically on improving general knowledge
compilation techniques and methodologies focusing on application scenarios in isola-
tion. We hope the ERA framework and underlying techniques can be inspirational
when designing and developing knowledge compilation applications.
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6.2 Open Problems and Future Directions
While we explored the di�erent pillars of our ERA framework on scaling knowledge

compilation applications, there are still numerous open problems that are worth
studying in further detail. Some of the notable problems are the following:

1. Constrained sampling with PB formula

2. Finer classification of PB formulas with respect to tool and heuristic performance

3. Applications of PB sampling and counting

4. More sophisticated preprocessing techniques involving PB formulas

In Chapters 3 and 5, we studied applications of knowledge compilation techniques
on the incremental constrained sampling task and PB model counting respectively. It
would be a natural extension to study the feasibility and applications of a constrained
sampler that natively handles PB formula inputs, or even a mixture of CNF and PB
constraint inputs. With PB sampling, perhaps it is also worthwhile to revisit the
route sampling task in Chapter 4 with PB encodings instead of CNF encodings. In
addition, it might also make sense to explore weighted sampling with more succinct
KC diagrams that capture symmetry or literal equivalences such as CCDD [LMY22].
In Chapter 5, we introduced two of the early exact PB counters with di�erent
techniques to the research community. It is apparent that the topic of PB model
counting is in its early days, and there are numerous interesting research topics
arising from our initial attempts at PB model counting. A notable topic would
be that of a finer classification of PB formulas with respect to heuristics used in
PB counters. It is highly possible that there is no single heuristic configuration
that is suitable for all kinds of input problem PB formulas, and therefore it would
make sense to systematically classify and understand the scenarios whereby di�erent
heuristics work well. In addition, there is currently a lack of more sophisticated
preprocessing and simplification techniques for PB formulas in contrast to the more
established area of CNF model counting whereby the continuous development of
preprocessing techniques contributed significantly to performance improvements
over the years. As such, it would make sense to study the topic of preprocessing
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for PB model counting, whether the preprocessing technique would be in general or
knowledge compilation specific.
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